Studies of acoustic field and fan housing interaction and transformations

Vitalijus Volkovas1 , Robertas Mikalauskas2 , Evaldas Černiauskas3

1, 2Kaunas University of Technology, Kaunas, Lithuania

3Salda Ltd, Šiauliai, Lithuania

2Corresponding author

Vibroengineering PROCEDIA, Vol. 3, 2014, p. 300-305.
Accepted 22 September 2014; published 10 October 2014

Copyright © 2014 JVE International Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract.

In order to reduce acoustic noise in residential, industrial as well as other premises, this research examined the interaction between the acoustic field of fixed sources (fans) and the insulating housing used for acoustic noise transformation. For this purpose, a model of acoustic field and heterogeneous mechanical system interaction was designed and tested to adequately reflect the actual processes. The results showed that the designed theoretical model allows to predict changes of the acoustic field in the installation environment. The absolute error of the values calculated by the model by using experimentally determined sound pressure level loss values did not exceed 2.5 dB when compared to the experimental values.

Keywords: modeling, acoustic field, FEM, heterogeneous mechanical system.

Acknowledgements

This research was funded by the European Social Fund under the project “Microsensors, Microactuators and Controllers for Mechatronic Systems (Go-Smart)” (Agreement No. VP1-3.1-ŠMM-08-K-01-015).

References

  1. Shuangli L., Hong N., Caijun X., Xin X. Aeroacoustic testing of the landing gear components. Journal of Vibroengineering, Vol. 14, Issue 1, 2012, p. 205-215. [CrossRef]
  2. Caijun X., Guang Z., Wei T., Shuangli L. Aeroacoustic noise reduction design of a landing gear structure based on wind tunnel experiment and simulation. Journal of Vibroengineering, Vol. 14, Issue 4, 2012, p. 1591-1600. [CrossRef]
  3. Ciskowski R. D., Brebbia C. A. Boundary Element Methods in Acoustics. Elseiver Applied Science, New York, 1991. [CrossRef]
  4. Filippi P., Habault D., Lefevre J. P., Bergassoli A. Acoustics, Basic Physics, Theory and Methods. Academic, New York, 1999. [CrossRef]
  5. Kludszuweit A. Time iterative boundary element method TIBEM – a new numerical method of four-dimensional system analysis for the calculation of the spatial impulse response. Acustica, Vol. 75, 1991, p. 17-27, (in German). [CrossRef]
  6. Kopuz S., Lalor N. Analysis of interior acoustic fields using the finite element method and the boundary element method. Applied Acoustic, Vol. 45, 1995, p. 193-210. [CrossRef]
  7. Yokota T., Sakamoto S., Tachibana H. Sound field simulation method by combining finite difference time domain calculation and multi-channel reproduction technique. Acoustical Science and Technology, Vol. 25, Issue 1, 2004, p. 15-23. [CrossRef]
  8. Yokota T., Sakamoto S., Tachibana H. Visualization of sound propagation and scattering in rooms. Acoustical Science and Technology, Vol. 23, Issue 1, 2002, p. 40-46. [CrossRef]
  9. Matsumoto G., Fujiwara K., Omoto A. Directivity of the sound radiated from a factory building. Acoustical Science and Technology, Vol. 22, Issue 6, 2001, p. 434-436. [CrossRef]
  10. Randall F. B. Industrial Noise Control and Acoustics. Marcel Dekker, New York, 2001. [CrossRef]
  11. Beranek L. L. Acoustics. Acoustical Society of America, New York, 1996. [CrossRef]
  12. Wright M. C. Lecture Notes on the Mathematics of the Acoustics. Imperial College Press, London, 2005. [CrossRef]
  13. Everstine G. C. Finite element formulation of structural acoustics problems. Computers and Structures, Vol. 65, 1997, p. 307-321. [CrossRef]
  14. Morand H. J.-P., Ohayon R. Fluid Structure Interaction: Applied Numerical Methods. Wiley, Chichester, UK, 1995. [CrossRef]
  15. Tsingos N., Gascuel J.-D. Soundtracks for computer animation: Sound rendering in dynamic environments with occlusions. Graphics Interface, 1997, p. 9-16. [CrossRef]
  16. Husung S., Mikalauskas R., Weber Ch., Kästner T. Modelling of sound propagation of technical systems for real-time VR-applications. Mechanika, Vol. 84, Issue 4, p. 33-37. [CrossRef]