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Abstract. This paper evaluates nonlinear free vibrations of Levy plates using Weak-Form 
variational principle in algebraic polynomial displacement functions. The energy functional of the 
plate problem was formulated using Weak-Form variational technique on the integral function of 
the Von Karman thin plate differential equations. The displacement functions were developed 
based on static deflection configurations of orthogonal beam network. The process of repeated 
direct integration on compatibility equation was used to determine the algebraic expressions for 
stress function. The amplitude of deflection which directly influences the geometric nonlinearity 
of the plate was determined using integration process on energy functional based on static 
equilibrium equations. The modal combination method was used to develop the stiffness and mass 
matrices respectively from the expressions of energy functional based on dynamic equilibrium 
equations. The numerical values of amplitudes of deflection at various aspect ratios were 
computed. Also, the first four nonlinear natural frequencies at various aspect ratios were 
numerically computed. The validation of the present study’s results using the results from previous 
work found in literature shows satisfactory convergence, with an absolute mean error of 0.186 %. 
Conclusively, the application of Weak-Form variational principle in polynomial displacement 
functions provides satisfactory approximation to nonlinear dynamic analysis of Levy plates. 
Keywords: algebraic polynomial, amplitude of deflection, energy functional, levy plate, 
nonlinear natural frequency, weak-form, variational principle. 

1. Introduction 

A levy plate in the context of this paper refers to any rectangular plate in which at least two 
opposite edge conditions are simply supported; and any of the two remaining edge conditions can 
either be clamped, simply supported or free. Engineering applications of levy plates are widely 
found in bridges, houses, marine structures, vehicular structures and airspace structures. In 
practice, almost all the rectangular plates engaged in the construction of these structures are 
classified as thin-walled structural components. Sequel to their thinness, the plates are often prone 
to large deformation in their engineering applications due to the influence of external disturbances. 
Consequently, the appropriate engineering analysis that is capable of simulating the actual 
response of thin rectangular plates to external disturbances must be the one formulated based on 
nonlinear mathematical model. However, the implication of using nonlinear mathematical model 
to determine the plate response is that the resulting nonlinear differential equations of equilibrium 
are likely going to impose complex mathematical challenges, and sometimes the closed-form 
solutions are absent. This problem is readily observed in the case of plates with mixed boundary 
conditions (majority of levy plates), which exhibit discontinuities in the edge supports [1]. 

For the fact that the resulting nonlinear differential equations from nonlinear method of 
analysis are tedious to tackle, approximation mathematical models have been developed to 
ameliorate the problem. Consequently, many of the investigators on large amplitude of vibrations 
of rectangular thin plates apply different approximation techniques to tackle the problem of 
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nonlinear vibrations of thin rectangular plates. 

1.1. Related works 

Engineering analysis of thin rectangular plates based on large amplitude of vibrations has for 
decade now posed interesting and challenging research fields. A number of approximation 
techniques have been developed for the purposes of investigating into large amplitude of 
vibrations of thin rectangular plates. [2] used Herrmann equations of motion in Galerkin technique 
to study the effect of initially applied stress on the nonlinear vibrations of flat plate. Finite element 
methods were used by [3-5] to investigate into large amplitude of vibrations of rectangular plates. 
Analytical technique on dynamic analogue of Von Karman differential equations was employed 
by [6] to investigate the effect of initial geometric imperfections and in-plane boundary conditions 
on the large amplitude of vibrations of angle- and cross -ply rectangular thin plates. [7] used levy 
solutions to study the vibration behaviour of multi-span rectangular plates. A combination of static 
and dynamic method-problem solving was used by [8] to investigate geometrically nonlinear free 
vibration of square plates with various boundary conditions. Second order asymptotic method was 
employed by [9] to investigate the effect of geometric imperfections on the amplitude of nonlinear 
vibrations of thin rectangular plates that were parametrically excited. A multiple scale method was 
used by [10] to investigate the nonlinear vibration of rectangular plates. Mesh-free least 
squares-based finite difference method was used by [11] to investigate large amplitude of 
vibrations of arbitrarily shaped thin plates. [12] used first order finite element theory to study free 
vibration of composite plates. A combination of Hamilton principle and Galerkin method was 
used by [13] to investigate nonlinear dynamic response of a simply supported functionally graded 
rectangular plate under the time-dependent thermalmechanical loads. Also, [14] used finite strip 
formulation to study nonlinear free vibration of plates. Furthermore, [15] used analytical  
technique, numerical and experimental analysis to study vibration behaviour of laminated 
composite plates under thermo-mechanical loading. The Galerkin-Vlasov method was used by 
[16] to obtain solution of free harmonic vibration of simply supported Kirchhoff plate. 

1.2. Statement of problem and objectives 

The energy methods have been proven to be very powerful for solving structural problems, 
especially those ones subjected to large deformations and large amplitude of vibrations. In 
analytical energy approach, the commonest approximation techniques appearing in most technical 
literature are the Hamilton’s energy principle, the classical direct variational principle in Ritz 
method, and the residual energy method in Galerkin approach. Also, the most commonly used 
displacement functions are the trigonometric functions, either in the form of single or double 
Fourier series. There is need therefore, to explore other simple but accurate approximation 
techniques to be used in formulating energy functional for structural problems.  

The primary objective of this study is to apply Weak-Form variational principle in formulating 
energy functional for nonlinear rectangular plate problem. The secondary objective is to develop 
and apply algebraic polynomial shape functions admissible to various levy plate boundary 
conditions. 

2. Theoretical formulations 

Fig. 1 shows a rectangular thin isotropic plate of levy type in which the edges 𝑥 = 0 and  𝑥 = 𝑎 are parallel and simply supported.  
The boundary conditions of the edges 𝑦 = 0 and 𝑦 = 𝑏 are arbitrary; and each of them can 

either be clamped, simply supported or free. The plate is invariant in engineering properties of 
Young modulus 𝐸 and Poisson’s ratio 𝜇, and it has constant mass density 𝜌. The plate lateral 
dimensions are defined by 𝑎 and 𝑏 as the length and width respectively. 
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Fig. 1. A rectangular plate showing at least two edges parallel and simply supported 

2.1. Formulation of energy functional 

The Weak-form variational principle is used to formulate the energy functional of the plate 
problems. The plate is assumed to be thin; and it satisfies the integral function of Von Karman’s 
thin plate differential equations. The analogous Von Karman’s thin plate differential equations of 
motion are as expressed in Eqs. (1-2): 

∇ସ𝑤 = 1𝐷 ቈ𝑞 + 𝜕ଶ𝐹𝜕𝑦ଶ 𝜕ଶ𝑤𝜕𝑥ଶ − 2 𝜕ଶ𝐹𝜕𝑥𝜕𝑦 𝜕ଶ𝑤𝜕𝑥𝜕𝑦 + 𝜕ଶ𝐹𝜕𝑥ଶ 𝜕ଶ𝑤𝜕𝑦ଶ − 𝜌𝑡𝑤ሷ ቉, (1)

∇ସ𝐹 = 𝐸𝑡 ൥ቆ 𝜕ଶ𝑤𝜕𝑥𝜕𝑦ቇଶ − 𝜕ଶ𝑤𝜕𝑥ଶ 𝜕ଶ𝑤𝜕𝑦ଶ ൩, (2)

where 𝐸  is Young modulus of plate materials; 𝑤 is displacement functions; 𝐹  is Airy’s stress 
functions; 𝑡 is plate thickness; 𝜌 is mass density of plate materials; 𝑞 is uniformly applied lateral 
load; 𝑤ሷ  is second derivative of 𝑤 with respect to time 𝑇; 𝐷 is flexural rigidity of the plate 

Let 𝑉ሺ𝑥,𝑦ሻ be defined as weighting function which is admissible to boundary conditions of 
the levy plates. Then the variational statement is applied on the integral functions of Eq. (1) as 
expressed in Eq. (3): 

0 = නන𝑉ሺ𝑥,𝑦ሻ ቈ𝜕ସ𝑤𝜕𝑥ସ + 2 𝜕ସ𝑤𝜕𝑥ଶ𝜕𝑦ଶ + 𝜕ସ𝑤𝜕𝑦ସ௕
଴

௔
଴− 1𝐷 ቆ𝑞 + 𝜕ଶ𝐹𝜕𝑦ଶ 𝜕ଶ𝑤𝜕𝑥ଶ − 2 𝜕ଶ𝐹𝜕𝑥𝜕𝑦 𝜕ଶ𝑤𝜕𝑥𝜕𝑦 + 𝜕ଶ𝐹𝜕𝑥ଶ 𝜕ଶ𝑤𝜕𝑦ଶ − 𝜌𝑡𝑤ሷ ቇ቉ 𝑑𝑥𝑑𝑦 , (3)

where 𝐷 is defined as expressed in Eq. (4): 

𝐷 = 𝐸𝑡ଷ12ሺ1 − 𝜇ଶሻ, (4)

where 𝜇 is Poisson’s ratio. 
Let 𝐾 be the reciprocal of 𝐷 as given by Eq. (5): 

𝐾 = 1𝐷. (5)

Integration by parts is exercised on Eq. (3) to trade differentiation from 𝑤 and 𝐹 to 𝑉ሺ𝑥,𝑦ሻ, 
and after simplification yields the expressions as given in Eq. (6): 

𝑥 

𝑏 𝑎 

𝑆𝑆𝑆𝑆 𝑦 

0 
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0 = නනቈ𝜕ଶ𝑉𝜕𝑥ଶ 𝜕ଶ𝑤𝜕𝑥ଶ + 2 𝜕ଶ𝑉𝜕𝑥𝜕𝑦 𝜕ଶ𝑤𝜕𝑥𝜕𝑦 + 𝜕ଶ𝑉𝜕𝑦ଶ 𝜕ଶ𝑤𝜕𝑦ଶ ± 2𝐾𝐹 𝜕ଶ𝑉𝜕𝑥𝜕𝑦 𝜕ଶ𝑤𝜕𝑥𝜕𝑦 ± 𝐾𝐹 𝜕ଶ𝑉𝜕𝑦ଶ 𝜕ଶ𝑤𝜕𝑥ଶ௕
଴

௔
଴± 𝐾𝐹 𝜕ଶ𝑉𝜕𝑥ଶ 𝜕ଶ𝑤𝜕𝑦ଶ − 𝐾𝑉𝑞 + 𝐾𝑉𝜌𝑡𝑤ሷ ቉ 𝑑𝑥𝑑𝑦 

+ න൝ቈ2𝜕𝑉𝜕𝑥 ൫𝑀௫௬൯ − 𝑉 ቆ𝜕𝑀௬𝜕𝑦 ቇ + 𝜕𝑉𝜕𝑦 ൫𝑀௬൯ + 2𝐾𝐹 𝜕𝑉𝜕𝑥 ൫𝑀௫௬൯ + 𝐾𝑉 𝜕𝐹𝜕𝑦 ሺ𝑀௫ሻ௔
଴+ 2𝐾𝑉𝐹 ቆ𝜕𝑀௫௬𝜕𝑥 ቇ − 𝐾𝐹 𝜕𝑉𝜕𝑦 ሺ𝑀௫ሻ቉଴௕ൡ 𝑑𝑥 

+ නቊቈ−𝑉 ൬𝜕𝑀௫𝜕𝑥 ൰ + 𝜕𝑉𝜕𝑥 ሺ𝑀௫ሻ − 2𝑉 ቆ𝜕𝑀௫௬𝜕𝑦 ቇ − 𝐾𝐹 𝜕𝑉𝜕𝑦 ൫𝑀௫௬൯ − 𝐾𝑉𝐹 ቆ𝜕𝑀௫௬𝜕𝑦 ቇ௕
଴− 2𝐾𝑉 𝜕𝐹𝜕𝑦 ൫𝑀௫௬൯ − 𝐾𝐹 𝜕𝑉𝜕𝑥 ൫𝑀௬൯ + 𝐾𝑉 𝜕𝐹𝜕𝑥 ൫𝑀௬൯቉଴௔ቋ 𝑑𝑦 , 

(6)

where: 𝑉 = 𝑉ሺ𝑥,𝑦ሻ. (7)

The expressions obtained in Eq. (6) contain three identically satisfied expressions: the 
functional of the plate problem, which is the integrand as contained in the squared bracket; and 
two natural boundary conditions, which are the integrands as contained in the curl brackets. These 
natural boundary conditions are identically satisfied at the boundary of the plate, and as such they 
are dropped in the further analysis in this work. 

By assuming that the plate vibrates harmonically and performs sinusoidal time response, the 
inertia term is simplified, and the expression for the functional is as expressed in Eq. (8): 

0 = නනቈ𝜕ଶ𝑉𝜕𝑥ଶ 𝜕ଶ𝑤𝜕𝑥ଶ + 2 𝜕ଶ𝑉𝜕𝑥𝜕𝑦 𝜕ଶ𝑤𝜕𝑥𝜕𝑦 + 𝜕ଶ𝑉𝜕𝑦ଶ 𝜕ଶ𝑤𝜕𝑦ଶ ± 2𝐾𝐹 𝜕ଶ𝑉𝜕𝑥𝜕𝑦 𝜕ଶ𝑤𝜕𝑥𝜕𝑦 ± 𝐾𝐹 𝜕ଶ𝑉𝜕𝑦ଶ 𝜕ଶ𝑤𝜕𝑥ଶ௕
଴

௔
଴± 𝐾𝐹 𝜕ଶ𝑉𝜕𝑥ଶ 𝜕ଶ𝑤𝜕𝑦ଶ − 𝐾𝑉𝑞 − 𝐾𝑉𝜌𝑡𝜔ଶ𝑤቉𝑑𝑥𝑑𝑦. (8)

Furthermore, for a free vibration analysis, the lateral load 𝑞 is disregarded so that Eq. (8) is 
simplified as expressed in Eq. (9): 

0 = නනቈ𝜕ଶ𝑉𝜕𝑥ଶ 𝜕ଶ𝑤𝜕𝑥ଶ + 2 𝜕ଶ𝑉𝜕𝑥𝜕𝑦 𝜕ଶ𝑤𝜕𝑥𝜕𝑦 + 𝜕ଶ𝑉𝜕𝑦ଶ 𝜕ଶ𝑤𝜕𝑦ଶ ± 2𝐾𝐹 𝜕ଶ𝑉𝜕𝑥𝜕𝑦 𝜕ଶ𝑤𝜕𝑥𝜕𝑦 ± 𝐾𝐹 𝜕ଶ𝑉𝜕𝑦ଶ 𝜕ଶ𝑤𝜕𝑥ଶ௕
଴

௔
଴± 𝐾𝐹 𝜕ଶ𝑉𝜕𝑥ଶ 𝜕ଶ𝑤𝜕𝑦ଶ − 𝜔ଶ𝑀𝐾𝑉𝑤቉𝑑𝑥𝑑𝑦, (9)

where: 𝑀 = 𝜌 ∗ 𝑡. (10)

The expression of Eq. (9) is a generic functional for dynamics of rectangular thin plates. 



NONLINEAR FREE VIBRATION ANALYSIS OF LEVY PLATES USING WEAK-FORM VARIATIONAL PRINCIPLE IN POLYNOMIAL DISPLACEMENT 
FUNCTIONS. P. D. ONODAGU, V. O. OKONKWO, C. H. AGINAM 

162 MATHEMATICAL MODELS IN ENGINEERING. DECEMBER 2019, VOLUME 5, ISSUE 4  

2.2. The boundary conditions 

The analysis of geometrically nonlinear thin rectangular plates requires the consideration of 
both the out-of-plane and in-plane boundary conditions. In this study, the levy plates of simply 
supported-clamped-simply supported-clamped (SCSC), simply supported-clamped-simply 
supported-simply supported (SCSS), simply supported-simply supported-simply 
supported-simply supported (SSSS), simply supported-clamped-simply supported-free (SCSF), 
and simply supported-simply supported-simply supported-free (SSSF) rectangular plates 
respectively are considered. The general boundary conditions with respect to these rectangular 
plates are stated as given in Eq. (11-23) [17-19]: 

The SCSC Rectangular plate: 

𝑢 = 𝑣 = 𝑤 = 𝑤଴ = 𝑁௫௬ = 𝑀௫ = 𝑀௫௬ = 𝜕ଶ𝑤଴𝜕𝑥ଶ = 0,     𝑥 = 0,𝑎, (11)𝑢 = 𝑣 = 𝑤 = 𝑤଴ = 𝜕𝑤𝜕𝑦 = 𝜕𝑤଴𝜕𝑦 = 0,     𝑦 = 0, 𝑏. (12)

The SCSS rectangular plate: 

𝑢 = 𝑣 = 𝑤 = 𝑤଴ = 𝑁௫௬ = 𝑀௫ = 𝑀௫௬ = 𝜕ଶ𝑤଴𝜕𝑥ଶ = 0,     𝑥 = 0,𝑎, (13)𝑢 = 𝑣 = 𝑤 = 𝑤଴ = 𝜕𝑤𝜕𝑦 = 𝜕𝑤଴𝜕𝑦 = 0,     𝑦 = 0, (14)𝑢 = 𝑣 = 𝑤 = 𝑤଴ = 𝑁௬௫ = 𝑀௬ = 𝑀௬௫ = 𝜕ଶ𝑤଴𝜕𝑦ଶ = 0,     𝑦 = 𝑏. (15)

The SSSS rectangular plate: 

𝑢 = 𝑣 = 𝑤 = 𝑤଴ = 𝑁௫௬ = 𝑀௫ = 𝑀௫௬ = 𝜕ଶ𝑤଴𝜕𝑥ଶ = 0,     𝑥 = 0,𝑎, (16)𝑢 = 𝑣 = 𝑤 = 𝑤଴ = 𝑁௬௫ = 𝑀௬ = 𝑀௬௫ = 𝜕ଶ𝑤଴𝜕𝑦ଶ = 0,      𝑦 = 0, 𝑏. (17)

The SCSF rectangular plate: 

𝑢 = 𝑣 = 𝑤 = 𝑤଴ = 𝑁௫௬ = 𝑀௫ = 𝑀௫௬ = 𝜕ଶ𝑤଴𝜕𝑥ଶ = 0,     𝑥 = 0,𝑎, (18)𝑢 = 𝑣 = 𝑤 = 𝑤଴ = 𝜕𝑤𝜕𝑦 = 𝜕𝑤଴𝜕𝑦 = 0,       𝑦 = 0, (19)𝑀௬ = 𝑄௬ = 𝑁௬ = 𝑁௬௫ = 0,       𝑦 = 𝑏. (20)

The SSSF rectangular plate: 

𝑢 = 𝑣 = 𝑤 = 𝑤଴ = 𝑁௫௬ = 𝑀௫ = 𝑀௫௬ = 𝜕ଶ𝑤଴𝜕𝑥ଶ = 0,      𝑥 = 0,𝑎, (21)𝑢 = 𝑣 = 𝑤 = 𝑤଴ = 𝜕𝑤𝜕𝑦 = 𝜕𝑤଴𝜕𝑦 = 0,      𝑦 = 0, (22)𝑀௬ = 𝑄௬ = 𝑁௬ = 𝑁௬௫ = 0,      𝑦 = 𝑏. (23)
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2.3. Determination of specially energy functional 

From the generic energy functional of Eq. (9), the specially energy functional with respect to 
any set of rectangular boundary conditions is determined by applying the general boundary 
conditions of Eq. (11-23). Thus, the specially energy functional (SEF) for SCSC rectangular plate 
is given as expressed in Eq. (24): 

0 = නනቈ𝜕ଶ𝑉𝜕𝑥ଶ 𝜕ଶ𝑤𝜕𝑥ଶ + 2 𝜕ଶ𝑉𝜕𝑥𝜕𝑦 𝜕ଶ𝑤𝜕𝑥𝜕𝑦 + 𝜕ଶ𝑉𝜕𝑦ଶ 𝜕ଶ𝑤𝜕𝑦ଶ + 𝐾𝐹 𝜕ଶ𝑉𝜕𝑥𝜕𝑦 𝜕ଶ𝑤𝜕𝑥𝜕𝑦 + 𝐾𝐹 𝜕ଶ𝑉𝜕𝑦ଶ 𝜕ଶ𝑤𝜕𝑥ଶ௕
଴

௔
଴+ 𝐾𝐹 𝜕ଶ𝑉𝜕𝑥ଶ 𝜕ଶ𝑤𝜕𝑦ଶ − 𝜔ଶ𝑀𝐾𝑉𝑤቉𝑑𝑥𝑑𝑦. (24)

The SEF for SCSS and SSSS rectangular plates is as given by Eq. (25): 

0 = නනቈ𝜕ଶ𝑉𝜕𝑥ଶ 𝜕ଶ𝑤𝜕𝑥ଶ + 2 𝜕ଶ𝑉𝜕𝑥𝜕𝑦 𝜕ଶ𝑤𝜕𝑥𝜕𝑦 + 𝜕ଶ𝑉𝜕𝑦ଶ 𝜕ଶ𝑤𝜕𝑦ଶ + 𝐾𝐹 𝜕ଶ𝑉𝜕𝑦ଶ 𝜕ଶ𝑤𝜕𝑥ଶ + 𝐾𝐹 𝜕ଶ𝑉𝜕𝑥ଶ 𝜕ଶ𝑤𝜕𝑦ଶ௕
଴

௔
଴− 𝜔ଶ𝑀𝐾𝑉𝑤቉𝑑𝑥𝑑𝑦. (25)

And the SEF for SCSF and SSSF rectangular plates is as given in Eq. (26): 

0 = නනቈ𝜕ଶ𝑉𝜕𝑥ଶ 𝜕ଶ𝑤𝜕𝑥ଶ + 2 𝜕ଶ𝑉𝜕𝑥𝜕𝑦 𝜕ଶ𝑤𝜕𝑥𝜕𝑦 + 𝜕ଶ𝑉𝜕𝑦ଶ 𝜕ଶ𝑤𝜕𝑦ଶ + 𝐾𝐹 𝜕ଶ𝑉𝜕𝑦ଶ 𝜕ଶ𝑤𝜕𝑥ଶ − 𝜔ଶ𝑀𝐾𝑉𝑤቉𝑑𝑥𝑑𝑦௕
଴

௔
଴ . (26)

2.4. Development of displacement functions 

Fig. 2 shows a levy plate consisting of an idealized series of orthogonal beam network in 𝑥 
and 𝑦-directions. It is assumed that each beam element running along any coordinate direction is 
a good representative of other series of beam elements that run along the same direction.  

 
Fig. 2. A Levy plate showing a series of orthogonal beam network and deflection configurations 

Let 𝑤ሺ𝑥ሻ  and 𝑤ሺ𝑦ሻ  denote the algebraic polynomial displacement functions in 𝑥  and 𝑦-directions as expressed in Eq. (27) and Eq. (28) respectively: 

𝑤ሺ𝑥ሻ = ෍𝑐௜𝑥௜௥
௜ୀ଴ , (27)

𝑤 

𝑤 

SS 𝑆𝑆 (4) 

(2) 
(1) (3) 

𝑦 

𝑥 0 

𝑏 

𝑎                          
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𝑤ሺ𝑦ሻ = ෍𝑑௝𝑦௝௥
௝ୀ଴ , (28)

where 𝑐௜ and 𝑑௝ are undetermined coefficients. 
Numerically, it has been proven that a five-term polynomials provides necessary and sufficient 

satisfaction for completeness as shape functions for a beam element. Therefore, the value of 𝑟 in 
the summation is four. The out-of-plane boundary conditions for clamped edge, simply supported 
edge and free edge are as expressed in Eq. (29), Eq. (30) and Eq. (31) respectively: 𝑤ሺ∙,∙ሻ = 𝑤ᇱሺ∙,∙ሻ = 0, (29)𝑤ሺ∙,∙ሻ = 𝑤ᇱᇱሺ∙,∙ሻ = 0, (30)𝑤ᇱሺ∙,∙ሻ = 𝑤ᇱᇱሺ∙,∙ሻ = 𝑤ᇱᇱᇱሺ∙,∙ሻ = 0, (31)

where 𝑤ሺ∙,∙ሻ represents deflection function, 𝑤′ሺ∙,∙ሻ, 𝑤′′ሺ∙,∙ሻ and 𝑤′′′ሺ∙,∙ሻ represent first, second and 
third derivatives with respect to the coordinates respectively. 

Suppose Fig. 2 depicts a levy plate of SCSC rectangular plate, then the deflection along 𝑥-direction is expressed as given in Eq. (32): 𝑤ሺ𝑥ሻ = 𝑐௢ + 𝑐ଵ𝑥 + 𝑐ଶ𝑥ଶ + 𝑐ଷ𝑥ଷ + 𝑐ସ𝑥ସ. (32)

By applying the boundary conditions of Eq. (30) in Eq. (32), and subsequently carrying out 
simplification, gives Eq. (33): 

𝑤ሺ𝑥ሻ = 𝑐ସ ∗ 𝑎ସ ൤ቀ𝑥𝑎ቁ − 2 ቀ𝑥𝑎ቁଷ + ቀ𝑥𝑎ቁସ൨. (33)

However, to account for series of beam mode shapes running along 𝑦-direction, Eq. (33) is 
modified as shown in Eq. (34): 

𝑤ሺ𝑥ሻ = 𝑐ସ ∗ 𝑎ସ ൤ቀ𝑥𝑎ቁ௠ − 2 ቀ𝑥𝑎ቁ௠ାଶ + ቀ𝑥𝑎ቁ௠ାଷ൨. (34)

Similarly suppose the edges Eqs. (2) and (4) of Fig. 2 are clamped, then the polynomial 
expression is as expressed in Eq. (35): 𝑤ሺ𝑦ሻ = 𝑑௢ + 𝑑ଵ𝑦 + 𝑑ଶ𝑦ଶ + 𝑑ଷ𝑦ଷ + 𝑑ସ𝑦ସ. (35)

By applying the boundary conditions of Eq. (29) in Eq. (35) and after simplifying, yields 
Eq. (36): 

𝑤ሺ𝑦ሻ = 𝑑ସ ∗ 𝑏ସ ൤ቀ𝑦𝑏ቁଶ − 2 ቀ𝑦𝑏ቁଷ + ቀ𝑦𝑏ቁସ൨. (36)

Also, to account for series of beam mode shapes running along 𝑥 -direction, Eq. (36) is 
modified as shown in Eq. (37): 

𝑤ሺ𝑦ሻ = 𝑑ସ ∗ 𝑏ସ ൤ቀ𝑦𝑏ቁ௡ାଵ − 2 ቀ𝑦𝑏ቁ௡ାଶ + ቀ𝑦𝑏ቁ௡ାଷ൨, (37)

where 𝑚, 𝑛 = 1, 2, 3, … 
The rectangular plate static mode shape is the product of Eq. (34) and Eq. (37) as expressed in 

Eq. (38): 
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𝑤ሺ𝑥,𝑦ሻ = 𝐴௠௡ ൤ቀ𝑥𝑎ቁ௠ − 2 ቀ𝑥𝑎ቁ௠ାଶ + ቀ𝑥𝑎ቁ௠ାଷ൨ ൤ቀ𝑦𝑏ቁ௡ାଵ − 2 ቀ𝑦𝑏ቁ௡ାଶ + ቀ𝑦𝑏ቁ௡ାଷ൨, (38)

where 𝐴௠௡ is as expressed in Eq. (39): 𝐴௠௡ = ሺ𝑐ସ ∗ 𝑎ସሻሺ𝑑௢ ∗ 𝑏ସሻ. (39)

The parameter 𝐴௠௡ is the amplitude of deflection function. Thus Eq. (38) is the static algebraic 
polynomial displacement function for SCSC rectangular plate. The same procedure is used to 
develop the static algebraic polynomial mode shapes for SCSS, SSSS, SCSF and SSSF rectangular 
plates; and they are as expressed in Eq. (40-43) respectively: 

𝑤ሺ𝑥,𝑦ሻ = 𝐴௠௡ ൤ቀ𝑥𝑎ቁ௠ − 2 ቀ𝑥𝑎ቁ௠ାଶ + ቀ𝑥𝑎ቁ௠ାଷ൨ ቈ32 ቀ𝑦𝑏ቁ௡ାଵ − 52 ቀ𝑦𝑏ቁ௡ାଶ + ቀ𝑦𝑏ቁ௡ାଷ቉, (40)𝑤ሺ𝑥,𝑦ሻ = 𝐴௠௡ ൤ቀ𝑥𝑎ቁ௠ − 2 ቀ𝑥𝑎ቁ௠ାଶ + ቀ𝑥𝑎ቁ௠ାଷ൨ ൤ቀ𝑦𝑏ቁ௡ − 2 ቀ𝑦𝑏ቁ௡ାଶ + ቀ𝑦𝑏ቁ௡ାଷ൨, (41)𝑤ሺ𝑥,𝑦ሻ = 𝐴௠௡ ൤ቀ𝑥𝑎ቁ௠ − 2 ቀ𝑥𝑎ቁ௠ାଶ + ቀ𝑥𝑎ቁ௠ାଷ൨ ൤6 ቀ𝑦𝑏ቁ௡ାଵ − 4 ቀ𝑦𝑏ቁ௡ାଶ + ቀ𝑦𝑏ቁ௡ାଷ൨, (42)𝑤ሺ𝑥,𝑦ሻ = 𝐴௠௡ ൤ቀ𝑥𝑎ቁ௠ − 2 ቀ𝑥𝑎ቁ௠ାଶ + ቀ𝑥𝑎ቁ௠ାଷ൨ ൤2 ቀ𝑦𝑏ቁ௡ − 2 ቀ𝑦𝑏ቁ௡ାଶ + ቀ𝑦𝑏ቁ௡ାଷ൨. (43)

2.5. The stress function 

One of the unknown parameters in the expression for the energy functional is the Airy’s stress 
function 𝐹. In this work, direct integration process on compatibility Eq. (2) is used to determine 
the expression for stress function. Thus, a repeated integration process on the right hand side of 
Eq. (2) is performed four times with respect to 𝑥-coordinate; and then four times with respect to 𝑦-coordinate as expressed in Eq. (44): 

𝐹௠௡ = න න න න න න න න ൥ቆ𝜕ଶ𝑤ሺ𝑚𝑛ሻ𝜕𝑥𝜕𝑦 ቇଶ − 𝜕ଶ𝑤ሺ𝑚𝑛ሻ𝜕𝑥ଶ 𝜕ଶ𝑤ሺ𝑚𝑛ሻ𝜕𝑦ଶ ൩.
௬

.
௬

.
௬ ,.

௬
.
௫

.
௫

.
௫

.
௫  (44)

where ׬ = ሺ∙ሻ𝑑𝑥.௫׬  and׬ = ሺ∙ሻ𝑑𝑦.௬׬ ; and for 𝑚 = 1, 2 and 𝑛 = 1, 2, 3. 
In this study, the following designations for describing mode shapes are adopted: for  𝑚 = 𝑛 = 1, then 𝑤ሺ1,1ሻ denotes the first mode shape; for 𝑚 = 1 and 𝑛 = 2, then 𝑤ሺ1,2ሻ denotes 

the second mode shape; for 𝑚 = 1 and 𝑛 = 3, then 𝑤ሺ1,3ሻ denotes the third mode shape; and for 𝑚 = 2 and 𝑛 = 2, then 𝑤ሺ2,2ሻ denotes the fourth mode shape. For instance, at mode 1, the mode 
shape with respect to SCSC rectangular plate is as given in Eq. (45): 

𝑤ሺ1,1ሻ = 𝐴ଵଵ ൤ቀ𝑥𝑎ቁଵ − 2 ቀ𝑥𝑎ቁଷ + ቀ𝑥𝑎ቁସ൨ ൤ቀ𝑦𝑏ቁଶ − 2 ቀ𝑦𝑏ቁଷ + ቀ𝑦𝑏ቁସ൨. (45)

Therefore, the corresponding algebraic stress function 𝐹ଵଵ with respect to SCSC rectangular 
plate evaluated using Eq. (44) is as expressed in Eq. (46): 
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𝐹ଵଵ = 𝑄𝐴ଵଵଶ 𝑥ସ𝑦଺3175200 ൛𝑥ଷሾ84 − 6𝑦ଶሺ15 + 2ሺ−5 + 𝑦ሻ𝑦ሻሿ+ 36𝑥ସൣ14 + 3𝑦൫−10 + 𝑦ሺ10 + ሺ−5 + 𝑦ሻ𝑦ሻ൯൧− 42𝑥ଶൣ14 + 𝑦൫−24 + 𝑦ሺ21 + 2ሺ−5 + 𝑦ሻ𝑦ሻ൯൧+ 105ൣ14 + 𝑦൫−36 + 𝑦ሺ39 + 4ሺ−5 + 𝑦ሻ𝑦ሻ൯൧− 5𝑥ହൣ70 + 𝑦൫−144 + 𝑦ሺ141 + 14ሺ−5 + 𝑦ሻ𝑦ሻ൯൧+ 𝑥଺ൣ70 + 𝑦൫−144 + 𝑦ሺ141 + 14ሺ−5 + 𝑦ሻ𝑦ሻ൯൧ൟ, 
(46)

where 𝑄 is as expressed in Eq. (47): 𝑄 = 𝐸 ∗ 𝑡. (47)

At any specified mode, the corresponding stress function is determined by substituting the 
corresponding mode shape into compatibility equation of Eq. (2); and then integrated by using 
Eq. (44). 

2.6. Determination of amplitude of deflection 

The frequency of natural vibration is a function of the rigidity parameter of the plate; and under 
large deflection, the plate analysis is shifted from rigid to flexible plate analysis, and the frequency 
depends on how much the system deviates from equilibrium position (amplitude of deflection). 

The amplitude of deflection 𝐴௠௡ is an unknown parameter associated with the mode shape; 
and to determine the amplitude of deflection, the expression for mode shape is appropriately 
substituted into the energy functional equation. The inertia parameter in the energy equations of 
Eq. (24-26) is replaced with the lateral load parameter ሺ𝐾𝑉𝑞ሻ. 

In this work, the mode shapes to be considered for any given set of plate boundary conditions 
are 𝑤ሺ1,1ሻ, 𝑤ሺ1,2ሻ, 𝑤ሺ1,3ሻ and 𝑤ሺ2,2ሻ; and the amplitudes of deflection to be determined are 𝐴ଵଵ , 𝐴ଵଶ , 𝐴ଵଷ  and 𝐴ଶଶ  respectively. It is assumed that the problem system is self-adjoint. 
Consequently, the weighting function 𝑉  in the energy functional is interchanged with the 
deflection function 𝑤 without loss in generality. For instance, by letting 𝑉 = 𝑤ሺ1,1ሻ, the integral 
expression for evaluating the amplitude of deflection 𝐴ଵଵ for SCSC rectangular plate is as shown 
in Eq. (48): 

නන൥ቆ𝜕ଶ𝑤ሺ1,1ሻ𝜕𝑥ଶ ቇଶ + 2ቆ𝜕ଶ𝑤ሺ1,1ሻ𝜕𝑥𝜕𝑦 ቇଶ + ቆ𝜕ଶ𝑤ሺ1,1ሻ𝜕𝑦ଶ ቇଶ + 𝐾𝐹 ቆ𝜕ଶ𝑤ሺ1,1ሻ𝜕𝑥𝜕𝑦 ቇଶ௕
଴

௔
଴ + 2𝐾𝐹 ቆ𝜕ଶ𝑤ሺ1,1ሻ𝜕𝑥ଶ ቇቆ𝜕ଶ𝑤ሺ1,1ሻ𝜕𝑦ଶ ቇ൩ 𝑑𝑥𝑑𝑦 = නන𝐾𝑞𝑤ሺ1,1ሻ𝑑𝑥𝑑𝑦௕

଴
௔
଴ . (48)

By carrying out double integration process and simplification on Eq. (48), an expression that 
simulates the Duffing’s type of equation is obtained as shown in Eq. (49): 1.3290873 ∗ 10ି଼𝑎ସ𝛽ସ𝐾𝑄𝐴ଵଵଷ + ሾ0.0393651 + 0.0185034𝛽ଶ + 0.00761907𝛽ସሿ𝐴ଵଵ− 0.0066667𝑎ସ𝛽ସ𝐾𝑞 = 0, (49)

where 𝛽 = 𝑏 𝑎⁄ . The solution of Eq. (49) yields three roots in terms of 𝐴ଵଵ which are characterized 
with two complex roots and a real root. The real root of Eq. (49) in terms of 𝐴ଵଵ is given as 
expressed in Eq. (50): 
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𝐴ଵଵ = −1.25992𝜉ଵቂ𝑍ଵ + ඥ𝑍ଶ + 𝑍ଷ𝜉ଵଷቃభయ + 𝜁ଵ ቐ1.99059 ∗ 10଻ ቈ𝑍ଵ + ට𝑍ଶ + 𝑍ଷ𝜉ଵଷ቉భయቑ, (50)

where: 𝜉ଵ = ሺ0.0393651 + 0.0185034𝛽ଶ + 0.00761907𝛽ସሻ, (51)𝑍ଵ = 3.17964 ∗ 10ିଵ଻𝑎ଵଶ𝐾ଷ𝑞𝑄ଶ𝛽ଵଶ, (52)𝑍ଶ = 1.01101 ∗ 10ିଷଷ𝑎ଶସ𝐾଺𝑞ଶ𝑄ସ𝛽ଶସ, (53)𝑍ଷ = 2.53561 ∗ 10ିଶଶ𝑎ଵଶ𝐾ଷ𝑄ଷ𝛽ଵଶ, (54)𝜁ଵ = 1𝑎ସ𝐾𝑄𝛽ସ. (55)

Thus, the expressions for 𝐴ଵଶ, 𝐴ଵଷ, and 𝐴ଶଶ are determined using the same procedure. 

2.7. Determination of stiffness and mass matrices 

The vibration of each mode shape of a rectangular plate consists of a product of two 
perpendicular motions in 𝑥 and 𝑦-coordinates respectively. During natural vibrations, there exist 
modal interactions among different modes. Consequently, in this work, the mode shape 𝑤 and the 
weighting function 𝑉  are interactively combined to effect these modal interactions. Thus, to 
determine the natural frequencies, the expressions representing the energy functional of  
Eq. (24-26) are invoked and modified in accordance with these modal interactions as expressed in 
Eq. (56-58) respectively: 

නනቈ𝜕ଶ𝑉𝜕𝑥ଶ 𝜕ଶ𝑤𝜕𝑥ଶ + 2 𝜕ଶ𝑉𝜕𝑥𝜕𝑦 𝜕ଶ𝑤𝜕𝑥𝜕𝑦 + 𝜕ଶ𝑉𝜕𝑦ଶ 𝜕ଶ𝑤𝜕𝑦ଶ + 𝐾𝐹௏𝐹௪ 𝜕ଶ𝑉𝜕𝑥𝜕𝑦 𝜕ଶ𝑤𝜕𝑥𝜕𝑦 + 𝐾𝐹௏𝐹௪ 𝜕ଶ𝑉𝜕𝑦ଶ 𝜕ଶ𝑤𝜕𝑥ଶ௕
଴

௔
଴ + 𝐾𝐹௏𝐹௪ 𝜕ଶ𝑉𝜕𝑥ଶ 𝜕ଶ𝑤𝜕𝑦ଶ ቉ 𝑑𝑥𝑑𝑦 = 𝜔ଶ𝑀𝐾නන𝑉𝑤𝑑𝑥𝑑𝑦,௕

଴
௔
଴  (56)

නනቈ𝜕ଶ𝑉𝜕𝑥ଶ 𝜕ଶ𝑤𝜕𝑥ଶ + 2 𝜕ଶ𝑉𝜕𝑥𝜕𝑦 𝜕ଶ𝑤𝜕𝑥𝜕𝑦 + 𝜕ଶ𝑉𝜕𝑦ଶ 𝜕ଶ𝑤𝜕𝑦ଶ + 𝐾𝐹௏𝐹௪ 𝜕ଶ𝑉𝜕𝑦ଶ 𝜕ଶ𝑤𝜕𝑥ଶ + 𝐾𝐹௏𝐹௪ 𝜕ଶ𝑉𝜕𝑥ଶ 𝜕ଶ𝑤𝜕𝑦ଶ ቉ 𝑑𝑥𝑑𝑦௕
଴

௔
଴ = 𝜔ଶ𝑀𝐾නන𝑉𝑤𝑑𝑥𝑑𝑦 ௕

଴
௔
଴ , (57)

නනቈ𝜕ଶ𝑉𝜕𝑥ଶ 𝜕ଶ𝑤𝜕𝑥ଶ + 2 𝜕ଶ𝑉𝜕𝑥𝜕𝑦 𝜕ଶ𝑤𝜕𝑥𝜕𝑦 + 𝜕ଶ𝑉𝜕𝑦ଶ 𝜕ଶ𝑤𝜕𝑦ଶ + 𝐾𝐹௏𝐹௪ 𝜕ଶ𝑉𝜕𝑦ଶ 𝜕ଶ𝑤𝜕𝑥ଶ ቉ 𝑑𝑥𝑑𝑦௕
଴

௔
଴ = 𝜔ଶ𝑀𝐾නන𝑉𝑤𝑑𝑥𝑑𝑦,௕

଴
௔
଴  (58)

where 𝐹௏ and 𝐹௪ are the stress functions associated with mode shapes corresponding to weighting 
function and displacement function respectively. For instance, to determine the stiffness 
component 𝑘ଵଵ  at first mode, let 𝑉 = 𝑤 = 𝑤ሺ1,1ሻ;  to determine the stiffness component  𝑘ଶଵ = 𝑘ଵଶ, let 𝑉 = 𝑤ሺ1,2ሻ and 𝑤 = 𝑤ሺ1,1ሻ; to determine the stiffness component 𝑘ଷଵ = 𝑘ଵଷ, let 𝑉 = 𝑤ሺ1,3ሻ and 𝑤 = 𝑤ሺ1,1ሻ; to determine the stiffness component 𝑘ସଵ = 𝑘ଵସ, let 𝑉 = 𝑤ሺ2,2ሻ 
and 𝑤 = 𝑤ሺ1,1ሻ and so on. For instance, the mode shapes for SCSC plate are as expressed in 



NONLINEAR FREE VIBRATION ANALYSIS OF LEVY PLATES USING WEAK-FORM VARIATIONAL PRINCIPLE IN POLYNOMIAL DISPLACEMENT 
FUNCTIONS. P. D. ONODAGU, V. O. OKONKWO, C. H. AGINAM 

168 MATHEMATICAL MODELS IN ENGINEERING. DECEMBER 2019, VOLUME 5, ISSUE 4  

Eqs. (59-62): 

𝑤ሺ1,1ሻ = 𝐴ଵଵ ൤ቀ𝑥𝑎ቁ − 2 ቀ𝑥𝑎ቁଷ + ቀ𝑥𝑎ቁସ൨ ൤ቀ𝑦𝑏ቁଶ − 2 ቀ𝑦𝑏ቁଷ + ቀ𝑦𝑏ቁସ൨, (59)𝑤ሺ1,2ሻ = 𝐴ଵଶ ൤ቀ𝑥𝑎ቁ − 2 ቀ𝑥𝑎ቁଷ + ቀ𝑥𝑎ቁସ൨ ൤ቀ𝑦𝑏ቁଷ − 2 ቀ𝑦𝑏ቁସ + ቀ𝑦𝑏ቁହ൨, (60)𝑤ሺ1,3ሻ = 𝐴ଵଷ ൤ቀ𝑥𝑎ቁ − 2 ቀ𝑥𝑎ቁଷ + ቀ𝑥𝑎ቁସ൨ ൤ቀ𝑦𝑏ቁସ − 2 ቀ𝑦𝑏ቁହ + ቀ𝑦𝑏ቁ଺൨, (61)𝑤ሺ2,2ሻ = 𝐴ଶଶ ൤ቀ𝑥𝑎ቁଶ − 2 ቀ𝑥𝑎ቁସ + ቀ𝑥𝑎ቁହ൨ ൤ቀ𝑦𝑏ቁଷ − 2 ቀ𝑦𝑏ቁସ + ቀ𝑦𝑏ቁହ൨. (62)

Then the stiffness matrix for SCSC rectangular plate is determined using the expressions given 
in Eqs. (63-67): 

නන൥ቆ𝜕ଶ𝑤ሺ1,1ሻ𝜕𝑥ଶ ቇଶ + 2ቆ𝜕ଶ𝑤ሺ1,1ሻ𝜕𝑥𝜕𝑦 ቇଶ + ቆ𝜕ଶ𝑤ሺ1,1ሻ𝜕𝑦ଶ ቇଶ + 𝐾ሺ𝐹ଵଵሻଶ ቆ𝜕ଶ𝑤ሺ1,1ሻ𝜕𝑥𝜕𝑦 ቇଶ௕
଴

௔
଴ + 2𝐾ሺ𝐹ଵଵሻଶ ቆ𝜕ଶ𝑤ሺ1,1ሻ𝜕𝑥ଶ ቇቆ𝜕ଶ𝑤ሺ1,1ሻ𝜕𝑦ଶ ቇ൩ 𝑑𝑥𝑑𝑦 = 𝑘ଵଵ , (63)

නනቈ𝜕ଶ𝑤ሺ1,2ሻ𝜕𝑥ଶ 𝜕ଶ𝑤ሺ1,1ሻ𝜕𝑥ଶ + 2𝜕ଶ𝑤ሺ1,2ሻ𝜕𝑥𝜕𝑦 𝜕ଶ𝑤ሺ1,1ሻ𝜕𝑥𝜕𝑦 + 𝜕ଶ𝑤ሺ1,2ሻ𝜕𝑦ଶ 𝜕ଶ𝑤ሺ1,1ሻ𝜕𝑦ଶ௕
଴

௔
଴ + 𝐾𝐹ଵଶ𝐹ଵଵ 𝜕ଶ𝑤ሺ1,2ሻ𝜕𝑥𝜕𝑦 𝜕ଶ𝑤ሺ1,1ሻ𝜕𝑥𝜕𝑦 + 𝐾𝐹ଵଶ𝐹ଵଵ 𝜕ଶ𝑤ሺ1,2ሻ𝜕𝑦ଶ 𝜕ଶ𝑤ሺ1,1ሻ𝜕𝑥ଶ+ 𝐾𝐹ଵଶ𝐹ଵଵ 𝜕ଶ𝑤ሺ1,2ሻ𝜕𝑥ଶ 𝜕ଶ𝑤ሺ1,1ሻ𝜕𝑦ଶ ቉ 𝑑𝑥𝑑𝑦 = 𝑘ଶଵ = 𝑘ଵଶ, 

(64)

නනቈ𝜕ଶ𝑤ሺ1,3ሻ𝜕𝑥ଶ 𝜕ଶ𝑤ሺ1,1ሻ𝜕𝑥ଶ + 2𝜕ଶ𝑤ሺ1,3ሻ𝜕𝑥𝜕𝑦 𝜕ଶ𝑤ሺ1,1ሻ𝜕𝑥𝜕𝑦 + 𝜕ଶ𝑤ሺ1,3ሻ𝜕𝑦ଶ 𝜕ଶ𝑤ሺ1,1ሻ𝜕𝑦ଶ௕
଴

௔
଴ + 𝐾𝐹ଵଷ𝐹ଵଵ 𝜕ଶ𝑤ሺ1,3ሻ𝜕𝑥𝜕𝑦 𝜕ଶ𝑤ሺ1,1ሻ𝜕𝑥𝜕𝑦 + 𝐾𝐹ଵଷ𝐹ଵଵ 𝜕ଶ𝑤ሺ1,3ሻ𝜕𝑦ଶ 𝜕ଶ𝑤ሺ1,1ሻ𝜕𝑥ଶ+ 𝐾𝐹ଵଷ𝐹ଵଵ 𝜕ଶ𝑤ሺ1,3ሻ𝜕𝑥ଶ 𝜕ଶ𝑤ሺ1,1ሻ𝜕𝑦ଶ ቉ 𝑑𝑥𝑑𝑦 = 𝑘ଷଵ = 𝑘ଵଷ, 

(65)

නනቈ𝜕ଶ𝑤ሺ2,2ሻ𝜕𝑥ଶ 𝜕ଶ𝑤ሺ1,1ሻ𝜕𝑥ଶ + 2𝜕ଶ𝑤ሺ2,2ሻ𝜕𝑥𝜕𝑦 𝜕ଶ𝑤ሺ1,1ሻ𝜕𝑥𝜕𝑦 + 𝜕ଶ𝑤ሺ2,2ሻ𝜕𝑦ଶ 𝜕ଶ𝑤ሺ1,1ሻ𝜕𝑦ଶ௕
଴

௔
଴ + 𝐾𝐹ଶଶ𝐹ଵଵ 𝜕ଶ𝑤ሺ2,2ሻ𝜕𝑥𝜕𝑦 𝜕ଶ𝑤ሺ1,1ሻ𝜕𝑥𝜕𝑦 + 𝐾𝐹ଶଶ𝐹ଵଵ 𝜕ଶ𝑤ሺ2,2ሻ𝜕𝑦ଶ 𝜕ଶ𝑤ሺ1,1ሻ𝜕𝑥ଶ+ 𝐾𝐹ଶଶ𝐹ଵଵ 𝜕ଶ𝑤ሺ2,2ሻ𝜕𝑥ଶ 𝜕ଶ𝑤ሺ1,1ሻ𝜕𝑦ଶ ቉ 𝑑𝑥𝑑𝑦 = 𝑘ସଵ = 𝑘ଵସ , 

(66)

නන൥ቆ𝜕ଶ𝑤ሺ2,2ሻ𝜕𝑥ଶ ቇଶ + 2ቆ𝜕ଶ𝑤ሺ2,2ሻ𝜕𝑥𝜕𝑦 ቇଶ + ቆ𝜕ଶ𝑤ሺ2,2ሻ𝜕𝑦ଶ ቇଶ + 𝐾ሺ𝐹ଶଶሻଶ ቆ𝜕ଶ𝑤ሺ2,2ሻ𝜕𝑥𝜕𝑦 ቇଶ௕
଴

௔
଴ + 2𝐾ሺ𝐹ଶଶሻଶ ቆ𝜕ଶ𝑤ሺ2,2ሻ𝜕𝑥ଶ ቇቆ𝜕ଶ𝑤ሺ2,2ሻ𝜕𝑦ଶ ቇ൩ 𝑑𝑥𝑑𝑦 = 𝑘ସସ . (67)

The resulting stiffness matrix is given as expressed in Eq. (68): 
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ሾ𝐊ሿ = ൦𝑘ଵଵ  𝑘ଵଶ  𝑘ଵଷ  𝑘ଵସ𝑘ଶଵ  𝑘ଶଶ  𝑘ଶଷ  𝑘ଶସ𝑘ଷଵ  𝑘ଷଶ  𝑘ଷଷ  𝑘ଷସ𝑘ସଵ  𝑘ସଶ  𝑘ସଷ  𝑘ସସ൪. (68)

The same procedure is used to develop other required stiffness matrices for SCSS, SSSS, SCSF 
and SSSF respectively. In similar approach, the right hand side (RHS) of Eq. (56), Eq. (57) and 
Eq. (58) respectively will yield the mass matrices after due integration process. Thus, for SCSC 
rectangular plate, the mass matrix is determined by using expressions given in Eqs. (69-72): 

𝜔ଶ𝑀𝐾නනቂ൫𝑤ሺ1,1ሻ൯ଶቃ 𝑑𝑥𝑑𝑦 = 𝑏ଵଵ௕
଴ ,௔

଴  (69)

𝜔ଶ𝑀𝐾නනሾ𝑤ሺ1,2ሻ ∗ 𝑤ሺ1,1ሻሿ𝑑𝑥𝑑𝑦 = 𝑏ଶଵ = 𝑏ଵଶ,௕
଴

௔
଴  (70)

𝜔ଶ𝑀𝐾නනሾ𝑤ሺ1,3ሻ ∗ 𝑤ሺ1,1ሻሿ𝑑𝑥𝑑𝑦 = 𝑏ଷଵ = 𝑏ଵଷ ,௕
଴

௔
଴  (71)

𝜔ଶ𝑀𝐾නනቂ൫𝑤ሺ2,2ሻ൯ଶቃ 𝑑𝑥𝑑𝑦 = 𝑏ସସ.௕
଴

௔
଴  (72)

The resulting mass matrix is as given in Eq. (73): 

ሾ𝑩ሿ = 𝜔ଶ ൦𝑏ଵଵ  𝑏ଵଶ  𝑏ଵଷ  𝑏ଵସ𝑏ଶଵ  𝑏ଶଶ  𝑏ଶଷ  𝑏ଶସ𝑏ଷଵ  𝑏ଷଶ  𝑏ଷଷ  𝑏ଷସ𝑏ସଵ  𝑏ସଶ  𝑏ସଷ  𝑏ସସ൪𝑀𝐾. (73)

The same approach is used to develop the mass matrices for SCSS, SSSS, SCSF and SSSF 
respectively. 

3. Numerical evaluation and discussion of results 

Natural vibrations of rectangular isotropic plates under geometrical nonlinearity are studied in 
this paper using weak-form variational principle. Numerical evaluations are required for adequate 
validation of the results of the present study with the results found in existing literature. The plate 
parameters used in this study are: 𝐸 =  10.92 MPa, 𝜌 =  100 kgm-3, 𝜇 =  0.3, 𝑎 =  1.0 m,  𝑡 = 0.01 m, 𝑏 = open, and 𝛽 = 𝑏 𝑎⁄  ,which were previously used by [3, 11, 20, 21] in their 
separate studies using different approximation techniques. Thus, by using aspect ratio, 𝛽 = 1, 
these parameters were appropriately substituted and the numerical values for the elements in the 
stiffness matrix of Eq. (68) are as given in Eq. (74): 

ሾ𝐊ሿ = ൦0.0632071  0.0415130  0.0221544  0.02892200.0415130  0.0419203  0.0288422  0.02925780.0221544  0.0288422  0.0235024  0.02014160.0289220  0.0292578  0.0201416  0.0293874൪. (74)

Similarly, by substituting these parameters appropriately, the numerical values for the 
elements in the mass matrix of Eq. (73) are as given in Eq. (75): 
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ሾ𝑩ሿ = 𝜔ଶ ൦7.46967  4.93073  2.62527  3.444054.93073  3.55067  2.02177  2.480092.62527  2.02177  1.21446  1.412183.44405  2.48009  1.41218  1.96091൪10ିହ. (75)

In the matrix manipulation, suppose the difference between ሾ𝐊ሿ and ሾ𝐁ሿ is ሾ𝐀ሿ, then: ሾ𝐀ሿ = ሾ𝐊ሿ − ሾ𝐁ሿ. (76)

The determinant of ሾ𝐀ሿ is thus: detሺሾ𝐀ሿሻ = detሺሾ𝐊ሿ − ሾ𝐁ሿሻ. (77)

For nontrivial solution of the eigen-function, Eq. (77) is set equal to zero, as expressed in 
Eq. (78): detሺሾ𝐊ሿ − ሾ𝐁ሿሻ = 0. (78)

The expression of Eq. (78) can be simplified numerically by pre-multiplying Eq. (78) by the 
inverse of Eq. (75) as expressed in Eq. (79): detሺሾ𝐁ሿିଵሾ𝐊ሿ − ሾ𝐁ሿିଵሾ𝐁ሿሻ = 0. (79)

The result of the manipulation of Eq. (79) yields an expression as given in Eq. (80): 

𝑑𝑒𝑡 ൦ሺ1323.27 − 𝑅ሻ −2441.51 2584.17 −1723.73−1482.14 ( 4108.7 − 𝑅) −13388.7 177.2341468.96 824.251 (18640.5 − 𝑅)  536.425−32.5375 −9.94004 −2.26802 (3915.67 − 𝑅)൪ = 0, (80)

where 𝑅 is 𝑅 = 𝜔ଶ. 
The solution of the resulting quartic algebraic equation in terms of R and subsequently in terms 

of 𝜔 gives the nonlinear natural frequencies of vibration of the rectangular SCSC plate at aspect 
ratio equal to one. Therefore, by carrying out the same procedure with respect to each of the SCSS, 
SSSS, SCSF and SSSF rectangular plates respectively yields the desired natural frequencies for 
the respective rectangular plate up to first four lowest natural frequencies.  

However, Table 1 presents the numerical values of the variation of the amplitudes of plate 
deflection with aspect ratios for the SCSC, SCSS, SSSS, SCSF and SSSF rectangular plates. The 
amplitudes of deflection are the measures of the rigidity characteristics of rectangular plates; and 
under geometrical nonlinearity of rectangular plates, these geometric characteristics shift from 
rigid to flexible plate conditions [21]. The amplitudes of deflection are strong parameters that 
affect the nonlinear flexural frequencies of rectangular plates based on large deflection. 

From Table 1, it was observed that the amplitudes of deflection for the SCSC, SCSS, SSSS 
and SSSF rectangular plates exhibit hard-spring type with the aspect ratios; but with the exception 
of the amplitudes of deflection of the third mode of the SSSF rectangular plate boundary 
conditions, which exhibit soft-spring type. On the other hand, it was observed that the amplitudes 
of deflection for the SCSF rectangular plate boundary conditions exhibit entirely soft-spring type 
with the aspect ratios. 

Also, Table 2 presents the numerical values of nonlinear natural frequencies for the SCSC, 
SCSS, SSSS, SCSF and SSSF rectangular plates based on the above given plate parameters at 
various aspect ratios. 
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Table 1. Variation of amplitudes of deflection with aspect ratios 

Boundary condition 
Amplitude of deflection, 𝐴௠௡ 

Mode Aspect ratio, 𝛽 𝛽 = 0.25 𝛽 = 0.50 𝛽 = 0.75 𝛽 = 1.0 𝛽 = 1.25 𝛽 = 1.50 

SCSC 

𝐴ଵଵ 0.0063 0.0919 0.3960 0.9779 1.6535 2.1545 𝐴ଵଶ 0.0074 0.1102 0.4925 1.2911 2.3935 3.4001 𝐴ଵଷ 0.0064 0.0974 0.4527 1.2603 2.5691 4.1174 𝐴ଶଶ 0.0130 0.1863 0.7711 1.8036 3.0012 4.0434 

SCSS 

𝐴ଵଵ 0.0061 0.0824 0.3160 0.6845 1.0382 1.2800 𝐴ଵଶ 0.0054 0.0760 0.3106 0.7364 1.2454 1.6731 𝐴ଵଷ 0.0032 0.0477 0.2116 0.5574 1.0770 1.6642 𝐴ଶଶ 0.0094 0.1242 0.4556 0.9455 1.4380 1.8363 

SSSS 

𝐴ଵଵ 0.0057 0.0664 0.2121 0.3788 0.4955 0.5639 𝐴ଵଶ 0.0034 0.0466 0.1837 0.4140 0.6552 0.8314 𝐴ଵଷ 0.0020 0.0287 0.1253 0.3220 0.6009 0.8879 𝐴ଶଶ 0.0059 0.0750 0.2604 0.5091 0.7352 0.9036 

SCSF 

𝐴ଵଵ 11.4724 4.2488 2.8316 2.3019 2.0428 1.8960 𝐴ଵଶ 4.8839 1.6481 1.0031 0.7499 0.6163 0.5327 𝐴ଵଷ 7.1802 2.1422 1.1845 0.8296 0.6509 0.5432 𝐴ଶଶ 9.8596 3.6792 2.4892 2.0541 1.8455 1.7292 

SSSF 

𝐴ଵଵ 0.0159 0.1105 0.2136 0.2743 0.3065 0.3247 𝐴ଵଶ 0.0116 0.0926 0.2107 0.3089 0.3768 0.4218 𝐴ଵଷ 15.2944 5.3778 3.3720 2.5797 2.1637 1.9087 𝐴ଶଶ 0.0181 0.1085 0.1924 0.2425 0.2713 0.2887 

Table 2. The numerical values of nonlinear natural frequencies  
of isotropic levy plates at various aspect ratios 

Boundary 
condition 

Nonlinear natural frequency, (rad/sec) 

Mode Aspect ratio, 𝛽 𝛽 = 0.25 𝛽 = 0.50 𝛽 = 0.75 𝛽 = 1.0 𝛽 = 1.25 𝛽 = 1.50 

SCSC 

𝜔ଵଵ 363.497 95.2656 45.9213 29.0854 23.2362 22.5013 𝜔ଵଶ 473.004 139.173 80.9642 62.6300 50.0136 42.5369 𝜔ଵଷ 1013.780 258.712 118.987 70.3803 56.2073 60.022 𝜔ଶଶ 2049.33 517.789 234.221 135.156 90.7409 71.5289 

SCSS 

𝜔ଵଵ 254.198 69.3414 35.3535 23.7843 19.653 19.2091 𝜔ଵଶ 366.991 118.946 75.0828 60.2854 42.7581 33.7225 𝜔ଵଷ 838.929 215.700 100.381 60.6915 54.8403 53.8604 𝜔ଶଶ 2058.11 520.456 235.745 136.163 90.1307 66.3526 

SSSS 

𝜔ଵଵ 167.815 49.357 27.454 20.5135 19.3654 19.5027 𝜔ଵଶ 315.027 106.266 69.7313 54.209 40.8385 33.850 𝜔ଵଷ 713.114 185.143 87.458 57.9053 54.0947 56.3444 𝜔ଶଶ 1862.55 471.88 214.423 124.733 82.6781 59.174 

SCSF 

𝜔ଵଵ 47.7087 19.6398 14.874 14.3069 13.9204 13.471 𝜔ଵଶ 116.163 59.5027 43.8963 35.6418 35.2985 35.6283 𝜔ଵଷ 267.400 78.6609 50.5387 48.853 54.5767 – 
0.8225i 

53.918 – 
5.7295i 𝜔ଶଶ 991.382 257.027 122.055 76.6943 54.5767 + 

0.8225i 
53.918 + 
5.7295i 

SSSF 

𝜔ଵଵ 0 + 
10472.4i 

0 + 
2588.97i 

0 + 
1531.26i 

0 + 
1194.23i 

0 + 
1044.08i 

0 + 
965.899i 𝜔ଵଶ 42.6735 18.8572 14.1528 12.7282 12.169 11.7224 𝜔ଵଷ 103.498 58.4575 45.4109 33.2682 31.362 33.8029 𝜔ଶଶ 305.628 86.0388 50.3588 47.5902 46.406 45.960 
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From Table 2, it was observed that the nonlinear natural frequencies for the levy plates under 
investigation exhibit soft-spring type with aspect ratios, except at the third modes of SCSC and 
SSSS rectangular plates, which deviated from the norm at aspect ratios 1.25 and 1.5 respectively. 
Furthermore, it was observed that the SCSF rectangular plate boundary conditions yielded positive 
real-valued complex conjugate nonlinear natural frequencies at the third and fourth modes in the 
vicinity of aspect ratios of 1.25 and 1.5 respectively. This exposition significantly doubts the 
stability of the SCSF rectangular plate boundary conditions at third and fourth modes at aspect 
ratio greater or equal to 1.25 based on the existence of high positive value of the real part of the 
complex conjugates. However, at aspect ratios less than or equal to 1.0, the SCSF rectangular plate 
boundary conditions yielded distinct positive nonlinear natural frequencies at the same third and 
fourth modes respectively. This exposition signifies that within the vicinity of the identified aspect 
ratios, the SCSF rectangular plate is stable at the third and fourth modes respectively. Also, from 
Table 2, it was observed that the SSSF rectangular plate boundary conditions yielded positive pure 
imaginary nonlinear natural frequencies at the first mode for all the selected aspect ratios, which 
means that the SSSF plate boundary conditions exhibits critical behaviour at the first mode, 
otherwise it is said to be merely stable. This exposition signifies that in the geometrically nonlinear 
dynamic analysis of SSSF rectangular plate boundary conditions using modal combination 
approach, the fundamental nonlinear frequency is sought at second mode instead of the first mode 
vis-à-vis the linear fundamental frequency of the plate boundary conditions. 

Table 3 presents the comparison of the nonlinear fundamental frequencies of the present 
study’s results with the results found in literature. However, the restriction to the use of only the 
nonlinear fundamental frequencies for the comparison was due to the non-availability of the 
results for higher mode nonlinear natural frequencies in almost all the literature reviewed. 

Table 3. Comparison of Nonlinear fundamental frequencies with results found in literature (𝛽 = 1) 

Plate properties Boundary 
condition Investigator Fundamental  

frequency (rad/s) 
Percentage 

error 

𝐸 = 10.92 MPa; 𝜌 = 100 kg/m3 𝜇 = 0.3 𝑎 = 1.0 m 𝑏 = 1.0 m 𝑡 = 0.01 m 

SCSC 

Present study 29.0854  
[20] 29.1873 0.349 
[3] 29.2315 0.500 
[11] 29.2627 0.606 

SSSS 

Present study 20.5135  
[20] 20.0990 –2.062 
[3] 20.0916 –2.100 
[11] 20.0818 –2.150 

SCSS 

Present study 23.7843  
[20] 24.0308 1.026 
[3] 24.0113 0.943 
[11] 23.9717 0.782 𝐸 = 30 GPa 𝜌 = 25 kg/m3 𝜇 = 0.3 𝑎 = 10 m 𝑏 = 10 m 𝑡 = 0.2 m 

SSSS Present study 422.785  
[23] 421.3570 –0.339 

SCSF Present study 293.666  
[23] 295.1590 0.506 

SSSF Present study 261.982  
[23] 261.2294 –0.288 

From Table 3, it was observed from columns 4 and 5 that the present study’s results exhibit 
lower-bound with respect to the results found in literature for the SCSC, SCSS and SCSF 
rectangular plates respectively. But in the case of SSSS and SSSF rectangular plates, the present 
study’s results exhibit upper-bound with respect to the results found in literature. Also, from 
column 5 of Table 3, the calculated absolute mean percentage error is 0.186, which shows that the 
present study’s results are in good agreement with the results found in literature. 
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4. Conclusions 

This paper evaluates the nonlinear natural frequencies for Levy plates using weak-form 
variational principle in algebraic orthogonal polynomial displacement functions. The nonlinear 
fundamental frequencies evaluated in this work are in good agreement with the results found in 
literature that were evaluated using other approximation techniques such as the finite element 
methods. Therefore, it is here-upon concluded that the efficacy of weak-form variational principle 
technique in dynamic analysis of Levy plates is very satisfactory vis-à-vis other approximation 
techniques. Also, it is here-unto concluded that the use of algebraic polynomial shape functions 
in vibration analysis of Levy plates yields satisfactory approximations to all the boundary 
conditions of the plates. Furthermore, it was observed in this work that the nonlinear natural 
frequencies for SCSF rectangular plate boundary conditions in the third and fourth modes 
exhibited positive real valued complex conjugates at aspect ratios 1.25 and 1.50 respectively.  
Thus, it is here concluded that at aspect ratio greater than or equal to 1.25 in the third and fourth 
modes respectively, the motions of vibration of SCSF rectangular plate are not stable under 
geometrically nonlinear conditions. Also, it was observed that the nonlinear natural frequencies 
in the first mode at various aspect ratios for SSSF rectangular plate exhibited positive pure 
imaginary values. The exposition here shows that at first mode, the nonlinear motion of vibration 
for SSSF rectangular plate under modal combination analysis is pole centred, otherwise it is said 
to exhibit critical behaviour or it is merely stable at the first mode. Therefore, it is here concluded 
that using modal combination analysis, the nonlinear fundamental frequency for SSSF rectangular 
plate is ought to be sought in the second mode instead of the usual first mode. 
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