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Abstract. In this work, a homotopy optimization method is proposed for reconstructing unknown 
inputs in non-linear dynamical systems. The unknown inputs are parametrized using a B-spline 
basis. This parameterization of inputs converts the unknown input identification problem into a 
parameter identification problem. The unknown parameters are identified through an optimization 
process. The proposed homotopy-based optimization method is designed to converge to the global 
optimal solution instead of a local minimum. The unknown parameters are obtained through a 
series of iterations guided by a homotopy parameter and an optimization algorithm. 
Keywords: homotopy optimization, parameter identification, input identification, non-linear 
systems, B-spline. 

1. Introduction 

The unknown input reconstruction problem deals with unmodelled dynamics, exogenous 
inputs, faults or other uncertainties and is important from the perspective of robust control, optimal 
control, and system supervision [1]. The problem is motivated by applications where measurement 
of some of the system inputs is physically not possible or too expensive, for e.g. the cutting force 
in machine tools, system faults in fault-tolerant control design [2], etc. The problem of unknown 
input reconstruction has been widely studied for many year. Observer based methods have been 
studied for linear systems in [3, 4], non-linear systems in [5-7] and time-delay systems in [8, 9]. 
The unknown input reconstruction is very close to system inversion studied in [10]. A subspace 
identification algorithm is developed in [11], which identifies the state-space matrices and 
reconstructs the unknown inputs from of system outputs and known inputs.  

In this work, we propose an optimization-based approach for reconstructing unknown inputs 
in non-linear systems. The proposed methodology assumes that only some of the system states are 
available through sensor measurement for input reconstruction, and an accurate mathematical 
model of the physical system is known. The unknown input must be found such that some 
objective function in its state and input is minimized. The optimization problem is posed via 
parameterization of the unknown inputs using basis functions. Therefore, the input reconstruction 
problem is posed as a parameter identification problem. However, the choice of parametrization 
leads to a large number of parameters that need to be identified for reconstructing the input. When 
deterministic approaches like the steepest descent, Gauss-Newton, etc. are used, convergence to a 
local minima is very common. On the other hand, stochastic algorithms like genetic algorithms, 
simulated annealing, etc. can be used for global convergence but these approaches increase the 
computation cost [12]. In this study, we address this problem by using the ideas of homotopy 
transformation [13]. The homotopy transformation involves adding convex terms with a known 
optimum to the objective function with a morphing parameter l. The transformed objective 
function can then be minimized using any deterministic approach to arrive at a global minimum 
[12], while slowly varying 𝑙 from 1 to 0 as the optimization proceeds. This approach is hereafter 
referred to as the homotopy optimization method. 

This paper is organized as follows. In Section 2, the procedure for homotopy optimization is 
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introduced. The proposed methodology for unknown input identification is discussed in Section 3. 
Section 4 presents the analysis of the homotopy transformation. In Section 5, numerical examples 
are presented to illustrate the developed method. Finally, the contribution of this work is 
summarized in Section 6. 

2. Homotopy optimization 

Consider a function 𝐹(𝐩) such that 𝐹(𝐩) attains the global minimum at 𝐩 = 𝐩∗. We need to 
find the optimal point 𝐩∗. Let 𝐺(𝐩) be a convex function with a known global minimum. The 
homotopy transformation is constructed as 𝐻(𝐩, 𝜆) = (1 − 𝜆)𝐹(𝐩) + 𝜆𝐺(𝐩) , where 𝜆  is the 
morphing parameter that continuously deforms 𝐺(𝐩) to 𝐹(𝐩) as it is varied from 1 to 0. Let the 
solution of 𝐻(𝐩, 𝜆) at a given 𝜆  be 𝐩∗ . Starting with 𝜆  = 1, the solution of the optimization 
problem 𝐻(𝐩∗ , 1) = 𝐺(𝐩∗) is known. Then the value of 𝜆 is decreased by a small amount 𝛿𝜆 and 
the function 𝐻(𝐩, 1 − 𝛿𝜆) is minimized using 𝐩∗  as an initial guess. The procedure is continued 
with small decrements in 𝜆 until 𝜆 = 0. At 𝜆 = 0, 𝐻(𝐩, 0) = 𝐹(𝐩) and the original optimization 
problem is recovered. 

3. Mathematical formulation 

Let us assume that the experimental system is governed by the following non-linear ordinary 
differential equations: 𝐪 (𝑡) = 𝐟(𝐪 ,𝐮 (𝑡), 𝑡), (1)𝐲 (𝑡) = 𝐂𝐪 (𝑡), (2)

where, 𝐪 (𝑡) ∈ ℝ  is the state vector, 𝐮 (𝑡) ∈ ℝ  is the input vector, 𝐲 (𝑡) ∈ ℝ  is the output 
vector, and the matrix 𝐂  is the output matrix. The experimental data  𝐲 (𝑡) = [𝑦 (𝑡),𝑦 (𝑡),⋯ ,𝑦 (𝑡)] is assumed to be collected over time 𝑡 . The mathematical 
model that will be used for reconstruction of the unknown inputs is assumed to be of the following 
form: 𝐪(𝑡) = 𝐟(𝐪,𝐮(𝑡), 𝑡),     (3)𝐲(𝑡) = 𝐂𝐪(𝑡), (4)

where, 𝐮(𝑡) ∈ ℝ  is the reconstructed input vector. For reconstruction, the unknown input is 
parametrized as 𝑢 = ∑ 𝜙 𝑝 = 𝜙 (𝑡)𝐩 , 𝑖 = 1,2,⋯ ,𝑚, where, 𝑁  represents the number of 
terms in the series expansion of 𝑢 , 𝜙 = [𝜙 (𝑡),𝜙 (𝑡),⋯ ,𝜙 (𝑡)]  are the basis functions, and 𝐩 = [𝑝 (𝑡),𝑝 (𝑡),⋯ ,𝑝 (𝑡)]  are the parameters to be identified. Now, the unknown input 𝐮(𝑡) can be written in vector form as:  𝐮(𝑡) = Φ(𝑡)𝐩, (5)

where: 

Φ(𝑡) = 𝜙 (𝑡) 0 ⋯ 00 𝜙 (𝑡) ⋯ 0⋮ ⋮ ⋱ ⋮0 0 ⋯ 𝜙 (𝑡) ,     𝐩 = 𝐩𝐩⋮𝐩 . 
Substituting Eq. (5) in Eqs. (3, 4), we get: 𝐪(𝑡) = 𝐟(𝐪,Φ(𝑡)𝐩, 𝑡), (6)
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𝐲(𝑡) = 𝐂𝐪(𝑡), (7)

where, 𝐩 = [𝐩 ,𝐩 ,⋯ ,𝐩 ]  is the unknown parameter vector to be identified. Once these 
parameters are identified, one can reconstruct the input signal 𝐮 (𝑡) . Thus, the problem of 
unknown input identification is transformed into the problem of parameter identification. Now, 
the problem of parameter identification is posed as the minimization of the following objective 
function: 

𝐽(𝐩) = 12 [𝐲 (𝑡) − 𝐲(𝑡)] [𝐲 (𝑡) − 𝐲(𝑡)]𝑑𝑡 . (8)

The objective function given in Eq. (8) is usually multi-modal with respect to 𝐩. Depending 
on the initial guess, the optimizer can converge to a local minimum. To avoid this problem, the 
following homotopy transformation is introduced in Eqs. (6-7) [12]: 𝐪(𝑡) = 𝐟(𝐪,Φ(𝑡)𝐩, 𝑡) + 𝜆Γ𝐞(𝑡), (9)𝐲(𝑡) = 𝐂𝐪(𝑡), (10)

where, 𝐞(𝑡) = 𝐪 (𝑡) − 𝐪(𝐩, 𝜆, 𝑡) . With the introduction of the homotopy term 𝜆Γ𝐞(𝑡)  in  
Eqs. (9-10), the objective function 𝐽 becomes a function of 𝜆 as follows: 

𝐽(𝐩, 𝜆) = 12 [𝐲 (𝑡) − 𝐲(𝐩, 𝜆, 𝑡)] [𝐲 (𝑡) − 𝐲(𝐩, 𝜆, 𝑡)]𝑑𝑡 . (11)

For a fixed gain matrix Γ with 𝜆 = 1, Eq. (11) is minimized. Let the optimal solution be 𝐩∗ . 
Keeping Γ unchanged, the value of 𝜆 is decreased by an amount 1 − 𝛿𝜆 and the objective function 
in Eq. (11) is minimized with 𝐩∗  as an initial guess. This procedure is repeated until 𝜆 reaches 
zero. Note that with the optimal parameter vector 𝐩∗  = [𝐩∗ ,𝐩∗ ,⋯ ,𝐩∗ ] , Eq. (1) can be 
written as: 𝐪 (𝑡) = 𝐟(𝐪 ,Φ(𝑡)𝐩∗, 𝑡), (12)𝐲 (𝑡) = 𝐂𝐪 (𝑡), (13)

where, 𝐮 (𝑡) is replaced with Φ(𝑡)𝐩∗. 
4. Analysis of homotopy transformation 

In order to understand the influence of homotopy transformation on the objective function, we 
study the dynamics of the error terms. Subtracting Eq. (9) from Eq. (12) and pre-multiplying both 
sides with Γ , the error dynamics can be obtained as follows: Γ 𝐞(𝑡) + 𝜆𝐞(𝑡) = Γ (𝐟(𝐪 ,Φ(𝑡)𝐩∗, 𝑡) − 𝐟(𝐪,Φ(𝑡)𝐩, 𝑡)). (14)

Eq. (14) represents the dynamics of a damped first-order system. It can be seen that a proper 
choice of Γ is crucial. By selecting a diagonal Γ with large positive values the influence of the 
forcing terms can be reduced. Also, for the same choice of Γ the zero equilibrium of Eq. (14) in 
the absence of the forcing terms terms is stable. Next, expanding 𝐟(𝐪,Φ(𝑡)𝐩, 𝑡) around 𝐪  and 𝐩∗ 
using the Taylor series, we get: 

𝐞(𝑡) + 𝜆Γ − ∂𝐟∂𝐪 𝐞(𝑡) ≈ ∂𝐟∂𝐩𝛿𝐩, (15)
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where, 𝛿𝐩 = 𝐩∗ − 𝐩. The solution of the singularly perturbed system Eq. (15) on a slow time scale 
(𝐞(𝑡) = 0) behaves as follows: 

𝐞(𝑡) = 𝜆Γ − ∂𝐟∂𝐪 ∂𝐟∂𝐩𝛿𝐩 ≜ 𝐀𝛿𝐩,  (16)

where, 𝐀  = 𝜆Γ − 𝐟𝐪 𝐟𝐩 . Next, we get 𝐽(𝐩 , 𝜆) = 𝛿𝐩 𝐀 𝐂 𝐂𝐀𝛿𝐩𝑑𝑡  by substituting 
Eq. (16) in Eq. (11), which represents a quadratic objective function in the parameter error 𝛿𝐩. If 
the gain matrix Γ is selected in such a way that synchronization holds then the optimum of the 
objective function is well defined [14]. 

5. Results and discussion 

In this section, several numerical examples are presented to demonstrate the proposed method 
of unknown input identification. The minimization of 𝐽(𝐩, 𝜆) (Eq. (11)) is performed using the 
fminsearch function of MATLAB. The differential equations are solved using ode15s: a variable 
step continuous-time solver.  

5.1. Choice of basis function 

In this work, we use the B-spline basis functions. The parameters required to define B-spline 
basis functions are, number of control points 𝑁 , the set of knots 𝒰 , and the B-spline basis 
functions 𝜙 (𝑡), where 𝑘 is the order of the spline. A B-spline is a piece-wise polynomial of 
degree (𝑘 + 1) defined in such a way that when the knots are distinct it is 𝑘 times continuously 
differentiable. The set of knots 𝒰 is a set of 𝑘 + 𝑛 + 1 non-decreasing sequence of time instances, 
i.e, 𝜏 ≤ 𝜏 ,∀𝑖 < 𝑗, 𝜏 , 𝜏 ∈ 𝒰, where 𝑛 + 1 = 𝑁 . The general 𝑘th order spline is expressed as a 
recursive relation of the form: 𝜙 (𝑡) = 𝑡 − 𝜏𝜏 − 𝜏 𝜙 (𝑡) + 𝜏 − 𝑡𝜏 − 𝜏 𝜙 (𝑡), (17)

where: 𝜙 (𝑡) = 1, 𝜏 ≤ 𝑡 < 𝜏 ,0, otherwise,  (18)

where 𝑖 indicates the position of the spline. The B-spline curve is defined a 𝑠(𝑡) = ∑ 𝑐 𝜙 (𝑡).  

5.2. Numerical results 

In order to demonstrate the accuracy of the proposed method, consider the following pendulum 
system: 𝑞 (𝑡) = 𝑞 (𝑡),𝑞 (𝑡) = −𝑝sin(𝑞 (𝑡)) − 𝑐𝑞 (𝑡) + 𝑢 (𝑡), 𝑞 (0) = 𝑞 (0) = 0, (19)

where 𝑝 = 14, and 𝑐 = 0.4. Experimental data is generated for 𝑡  = 20 s by numerically integrating 
Eq. (19). Now, given 𝑞 (𝑡), the objective is to identify the unknown input 𝑢 (𝑡). By following 
the procedure mentioned above, we assume a parameterization of the unknown input in the 
mathematical model (Eqs. (6-7)) of the form 𝑢 (𝑡) = Φ(𝑡)𝐩. The B-spline basis Φ(𝑡) is obtained 
from Eqs. (17-18). The unknown parameter-vector 𝐩 is obtained by minimizing Eq. (11). For this 
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example, we consider two input signals 𝑢 (𝑡) = 𝑢(𝑡 − 2) − 𝑢(𝑡 − 3), where 𝑢(𝑡) is the step 
function and 𝑢 (𝑡) = sgn(sin(0.5𝑡)). 

Fig. 1 shows results for the input signal 𝑢 (𝑡) = sgn(sin(0.5𝑡)). The B-spline parameters 
considered for this case are 𝑁  = 5 and 𝑘 = 0, and the homotopy gain parameter Γ = 500. It can 
clearly be seen from Fig. 1(a) that the identified input 𝑢 (𝑡) is nearly identical to the actual input 𝑢 (𝑡) . Fig. 1(b) shows the comparison between experimental displacement 𝑞 (𝑡)  and 
displacement obtained by integrating the mathematical model 𝑞 (𝑡) with the identified input 𝑢(𝑡). 
From Fig. 1(b) it is clear that 𝑞 (𝑡) matches very closely with the experimental data 𝑞 (𝑡). 

 
a) 

 
b) 

Fig. 1. a) Actual input 𝑢 (𝑡) = sgn(sin(0.5𝑡)) and identified input 𝑢 (𝑡), b) experimental  
displacement 𝑞 (𝑡), and model displacement 𝑞 (𝑡) obtained using 𝑢 (𝑡) 

Fig. 2 shows results for the input signal 𝑢 (𝑡) = 𝑢(𝑡 − 2) − 𝑢(𝑡 − 3) . The B-spline 
parameters considered for this case are 𝑁 = 6 and 𝑘  = 0, and the homotopy gain parameter  Γ = 150. It can clearly be seen from Fig. 2(a) that the identified input 𝑢 (𝑡) is nearly identical to 
the actual input 𝑢 (𝑡) . Fig. 2(b) shows the comparison between experimental displacement 𝑞 (𝑡) and displacement obtained by integrating the mathematical model 𝑞 (𝑡) with the identified 
input 𝑢(𝑡). From Fig. 2(b) it is clear that 𝑞 (𝑡) matches very closely with the experimental data 𝑞 (𝑡). 

 
a) 

 
b) 

Fig. 2. a) Actual input 𝑢 (𝑡) = rect(𝑡), 2 ≤ 𝑡 ≤ 3 and identified input 𝑢 (𝑡), b) experimental 
displacement 𝑞 (𝑡), and model displacement 𝑞 (𝑡) obtained using 𝑢 (𝑡) 

6. Conclusions 

In this work, the input reconstruction problem for non-linear dynamical systems is studied. 
Through input vector parameterization, the unknown input identification problem is reformulated 
as a parameter identification problem, which is then solved using the ideas of Homotopy 
transformation. Homotopy transformation is considered so that the global optimum is achieved. 
A theoretical analysis of the homotopy transformation is presented in this work, in which it is 
shown that as long as the high-gain observer synchronizes the experimental and model response, 
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the global optimum of the objective function can be identified. Finally, the accuracy of the 
proposed methodology is demonstrated via a numerical example in which it is shown that by using 
the proposed methodology one can effectively reconstruct the unknown inputs. 
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