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Abstract. The aim of the paper is to study the effects of an accelerometer mass on natural 
frequency of a cantilever beam of AZ61 magnesium alloy. The fundamental natural frequency of 
the beam is determined experimentally using vibration analyzer OROS-34 for different location 
of accelerometer mass on the beam. Vibration in the beam is generated by a lightweight hand 
hammer. Analytical formulation is done to calculate modal properties of a mass loaded beam. 
Further, the problem is simulated using ANSYS and the simulated results are compared with the 
experimental and analytical results. 
Keywords: vibration analyzer, accelerometer, ANSYS and cantilever beam. 

1. Introduction 

The economical design of any structure leads to efficient use of its materials while high 
production of a component is possible due to high speeds of the machines. Thus the inclinations 
towards lightweight structures and highly efficient machines are responsible for creating resonant 
conditions during service of the structures and machines. It is essential to measure the vibration 
characteristics in regular manner to avoid any accident due to resonance. There are many authors 
(Srinath and Das [1], Ozkaya [2], Low [3], Mermertas and Erol [4], Oz and Ozkaya [5], 
Kotambkar [6], Caker and Sanliturk [7], Sadri et al. [8], Vladimir et al. [9], Kras and Gardonio 
[10]) who have used various methods to study the behaviour of vibrating structures and machines. 
Xu et al. [11] focused on the principles, methods and applications of intelligent vibration control 
in civil engineering structures. Hatter [12] used computational methods of vibration analysis for 
different mechanical systems. In most of the conditions, the mass of accelerometer is neglected 
but for vibration analysis of lightweight structures with accuracy, the accelerometer mass should 
also be considered. In this paper, the effects of accelerometer mass on natural frequency of a 
cantilever beam are studied analytically, numerically and experimentally. The simulated results 
by ANSYS are compared satisfactorily with the analytical and experimental results.  

2. Experimental setup 

An experimental setup consists of a vibration analyzer (OROS-34), computer, a beam of AZ61 
magnesium alloy, vice to fix one end of the beam and a hand hammer is used for investigation. 
The dimension of the beam is 250×10×4 in mm, mass of accelerometer is 12.95 gm. Young’s 
modulus (𝐸) and material density 𝜌  of the beam are considered as 45 GPa and 1800 kg/m3 
respectively. One end of the beam is fixed in vice and the length of the hanging portion of the 
beam is 240 mm. Accelerometer is mounted at desired place on the beam and the response signal 
generated after its initial excitation with the help of the hand hammer is used as the input for the 
vibration analyzer. This process is repeated for different locations on the beam and its natural 
frequency is obtained corresponding to each location in Mode I. 
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Fig. 1. Experimental setup 

3. Analytical solution 

An analytical model of beam in fixed-free condition (cantilever) with concentrated point mass 
(m) of accelerometer is considered. A dual frame of reference is used and the beam is divided into 
two parts from the mass location. Each part has four constants and therefore, there are total eight 
constants for the beam. Beam has eight constants but only four boundary conditions (slope and 
deflection are zero at fixed end whereas moment and shear force are taken as zero at free end) are 
available. Therefore, to solve the problem, additional four compatibility equations [3] are used.  

 
Fig. 2. Beam in fixed-free condition with accelerometer mass 

The Euler-Bernoulli equation for free vibration of the beam is given by: 

𝐸𝐼 𝜕 𝑦𝜕𝑥 + 𝜌𝐴 𝜕 𝑦𝜕𝑡 = 0. (1)

Using variable separable method, the solution can be written as: 𝑦 𝑥, 𝑡 = 𝑌 𝑥 .𝑇 𝑡 . (2)

The mode shape function 𝑌 𝑥  is represent as: 𝑌 𝑥 = 𝐴 cosh𝛽𝑥 + 𝐵 sinh𝛽𝑥 + 𝐶 cos𝛽𝑥 + 𝐷 sin𝛽𝑥, (3)

where, 𝛽 = (𝜔 𝜌𝐴 𝐸𝐼⁄ ). 
The natural frequency 𝜔 can be written as: 

𝜔 = 𝛽 𝐸𝐼𝜌𝐴. (4)

The beam is divided in to two parts at the mass location; two coordinate systems are used at 
each end of beam: 𝑌 (𝑥 ) = 𝐴 cosh𝛽𝑥 + 𝐵 sinh𝛽𝑥 + 𝐶 cos𝛽𝑥 + 𝐷 sin𝛽𝑥 , (5)
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𝑌 (𝑥 ) = 𝐴 cosh𝛽𝑥 + 𝐵 sinh𝛽𝑥 + 𝐶 cos𝛽𝑥 + 𝐷 sin𝛽𝑥 , (6)

where, at left end of the beam (𝑥 = 0  ) and at right hand (𝑥 = 0  )  
At the left hand of the beam is fixed, displacement field 𝑦 (𝑥, 𝑡) satisfies boundary conditions. 

Deflection (𝑦 = 0) and slope(𝑦 = 0), 𝑦 (𝑥, 𝑡) can be written as: 𝑌 (𝑥 ) = (cosh𝛽𝑥 − cos𝛽𝑥 )𝐴 + (sinh𝛽𝑥 − sin𝛽𝑥 )𝐵 . (7)

At the right hand of the beam is free, displacement field 𝑦 (𝑥, 𝑡) satisfies boundary conditions. 
Moment (𝑦 = 0) and shear force (𝑦 = 0), 𝑦 (𝑥, 𝑡) can be written as: 𝑌 (𝑥 ) = (cosh𝛽𝑥 + cos𝛽𝑥 )𝐴 − (sinh𝛽𝑥 + sin𝛽𝑥 )𝐵 . (8)

Four compatibility equations [3] are applied at the mass location. 
Equation for displacement at the location of attached mass: 𝑦  (𝑥 )  = 𝑦 (𝑥 )  , (9)(cosh𝛽𝑎 − cos𝛽𝑎)𝐴 + (sinh𝛽𝑎 − sin𝛽𝑎)𝐵 − (cosh𝛽𝑏 + cos𝛽𝑏)𝐴+ (sinh𝛽𝑏 + sin𝛽𝑏)𝐵 = 0. (10)

Equation for slope at the location of attached mass: 𝑦 (𝑥 )  = −𝑦 (𝑥 )  , (11)(sinh𝛽𝑎 + sin𝛽𝑎)𝐴 + (cosh𝛽𝑎 − cos𝛽𝑎)𝐵 + (sinh𝛽𝑏 − sin𝛽𝑏)𝐴− (cosh𝛽𝑏 + cos𝛽𝑏)𝐵 = 0. (12)

Equation for moment at the location of attached mass: 𝑦 (𝑥 )  = 𝑦 (𝑥 )  , (13)(cosh𝛽𝑎 + cos𝛽𝑎)𝐴 + (sinh𝛽𝑎 + sin𝛽𝑎)𝐵 − (cosh𝛽𝑏 − cos𝛽𝑏)𝐴+ (sinh𝛽𝑏 − sin𝛽𝑏)𝐵 = 0. (14)

Equation for shear force at the location of attached mass: 𝑦 (𝑥 )  + 𝑦 (𝑥 )  + 𝑚.𝑦 (𝑥 )  = 0, (15)(sinh𝛽𝑎 − sin𝛽𝑎)𝐴 + (cosh𝛽𝑎 + cos𝛽𝑎)𝐵 + (sinh𝛽𝑏 + sin𝛽𝑏)𝐴− (cosh𝛽𝑏 − cos𝛽𝑏)𝐵 + 𝑚𝛽𝜌𝐴 {(cosh𝛽𝑎 − cos𝛽𝑎)𝐴 + (sinh𝛽𝑎 − sin𝛽𝑎)𝐵 } = 0. (16)

Let us assume 𝜇 = 𝑎 𝐿⁄  (Non-dimensional mass location parameter) and: 𝑃 = cosh𝛽𝐿𝜇 − cos𝛽𝐿𝜇, 𝑄 = sinh𝛽𝐿𝜇 − sin𝛽𝐿𝜇, 𝑆 = cosh𝛽𝐿𝜇 + cos𝛽𝐿𝜇, 𝑅 = sinh𝛽𝐿𝜇 + sin𝛽𝐿𝜇, 𝑃 = cosh𝛽𝐿(1 − 𝜇) − cos𝛽𝐿(1 − 𝜇), 𝑄 = sinh𝛽𝐿(1 − 𝜇) − sin𝛽𝐿(1 − 𝜇), 𝑆 = cosh𝛽𝐿(1 − 𝜇) + cos𝛽𝐿(1 − 𝜇), 𝑅 = sinh𝛽𝐿(1 − 𝜇) + sin𝛽𝐿(1 − 𝜇), 𝜑 = 𝑚𝛽𝜌𝐴 . 
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Combining Eqs. (10), (12), (14) and (16), the frequency equation can be found in determinant 
form as: 𝑃                 𝑄𝑅                 𝑃 −𝑆    𝑅𝑄 −𝑆𝑆        𝑅       𝑄 + 𝑃 .𝜑 𝑆 + 𝑄 .𝜑 −𝑃    𝑄𝑅 −𝑃 = 0. (17)

After solving the above determinant of Eq. (17) with the help of MATLAB, the values of 𝛽𝐿 
at different locations (𝑎 𝐿⁄  ratios) on the beam are determined for Mode I, Mode II and Mode III. 
The corresponding natural frequencies are thus obtained by using Eq. (4). Table 1 shows that the 
natural frequency is sensitive to mass addition and its location in different modes. The effects of 
the accelerometer mass in Mode I, Mode II and Mode III of the vibrating cantilever beam are 
given in Fig. 3, Fig. 4 and Fig. 5 respectively where the variation in βL is shown with respect to 
non-dimensional location parameter (𝑎 𝐿⁄ ) of the mass.  

Table 1. Effects of mass locations on first three bending modes 

Sl. No. 
𝑎𝐿 𝛽𝐿 

Mode I Mode II Mode III 
1 0.05 1.87507 4.69180 7.82639 
2 0.1 1.87470 4.66240 7.48033 
3 0.15 1.87319 4.55980 6.86953 
4 0.2 1.86934 4.37503 6.56548 
5 0.25 1.86177 4.16797 6.55827 
6 0.3 1.84913 3.99610 6.72475 
7 0.35 1.83041 3.88078 6.99618 
8 0.4 1.80522 3.82463 7.33186 
9 0.45 1.77393 3.82531 7.67090 
10 0.5 1.73751 3.87976 7.85383 
11 0.55 1.69730 3.98526 7.71791 
12 0.6 1.65463 4.13793 7.42023 
13 0.65 1.61071 4.32736 7.15026 
 14 0.7 1.56646 4.52377 7.01323 
15 0.75 1.52258 4.66458 7.10872 
16 0.8 1.47954 4.68718 7.47536 
17 0.85 1.43765 4.59606 7.82653 
18 0.9 1.39711 4.43830 7.78095 
19 0.95 1.35803 4.25216 7.49919 

 
Fig. 3. Effect of mass loading on natural frequency of Mode I 

 
Fig. 4. Effect of mass loading on natural frequency of Mode II 
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Fig. 5. Effect of mass loading on natural frequency of Mode III 

4. Finite element simulation using ANSYS 

The finite element analysis simulation is done by modal analysis module of ANSYS 
workbench 16.1. At first, a 3D model of rectangular cross-section beam having dimension 
240×10×4 in mm with attached point mass at desired location is developed in design modeler of 
the ANSYS software. This point mass is acting as the accelerometer mass. The model is now 
encastred at one end to act as a cantilever and meshing is done with the element type Hex20. The 
total number of elements and nodes are 1200 and 7605 respectively. The natural frequency of 
beam model is obtained from the software. The simulated results of natural frequencies in ANSYS 
at different locations are given in Table 2. For analysis, the linear vibration is considered.  
However, on moving the accelerometer from fixed end to free end, deflection in the beam 
increases which arises its increased geometrical non-linearity. This creates some error between 
experimental and other results. 

Table 2. Natural frequencies in Mode I obtained from analytical, numerical, experimental analyses 

Sl. No. 
𝑎𝐿 Natural frequency (Hz) 

Analytical  ANSYS Simulation Experimental  
1 0.05 55.699 56.247 52 
2 0.1 55.678 56.225 52 
3 0.15 55.588 56.135 52 
4 0.2 55.359 55.907 51 
5 0.25 55.000 55.459 50 
6 0.3 54.169 54.712 48 
7 0.35 53.077 53.613 47 
8 0.4 51.627 52.150 45 
9 0.45 49.853 50.358 42 
10 0.5 47.827 48.312 41 
11 0.55 45.638 46.099 39 
12 0.6 43.373 43.808 36 
13 0.65 41.101 41.510 34 
14 0.7 38.873 39.257 31 
15 0.75 36.726 37.100 30 
16 0.8 34.679 35.014 28 
17 0.85 32.743 33.055 26 
18 0.9 30.922 31.215 25 
19 0.95 29.217 29.490 23 

5. Conclusions 

From the analysis, it is clear that natural frequency of beam is more sensitive to mass 
attachment and its position. The fall in natural frequency in different modes is found maximum 
when the mass attachment is at the antinode. The frequency is not affected when the mass 
attachment is at the node. The results obtained from finite element simulation (ANSYS) are much 
closed to the analytical results while some deviation from the experimental results is due to 
geometrical non-linearity in the beam subjected to the mass attachment.  
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