Design study of a magnetoelectric-electromagnetic vibration energy converter for energy harvesting

Sonia Bradai1 , Slim Naifar2 , Olfa Kanoun3

1, 2, 3Technische Universität Chemnitz, Chemnitz, Germany

1, 2National Engineering School of Sfax, University of Sfax, Sfax, Tunisia

1Corresponding author

Vibroengineering PROCEDIA, Vol. 27, 2019, p. 19-23. https://doi.org/10.21595/vp.2019.21024
Received 16 September 2019; accepted 24 September 2019; published 30 September 2019

Copyright © 2019 Sonia Bradai, et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Creative Commons License
Abstract.

The aim of this paper is to design a combination of a magnetoelectric-electromagnetic (ME-EM) vibration converter in order to reach an improved energy outcome. In this paper, the influence of magnets polarization and magnetoelectric transducer and coil direction are investigated. For this purpose, a finite element model is developed using one coil, one ME transducer in a magnetic circuit. Simulation results show that a better magnetic field distribution and variation is reached, if the magnetic circuit magnets are placed in attraction. Radial polarization shows decisive advantages in comparison with axial polarization. The placement of coil parallel to the magnetic circuit direction and the magnetization of the ME transducer along its width is the optimal direction relative to the magnetic circuit.

Keywords: vibration converter, energy harvesting, electromagnetic converter, magnetoelectric converter, piezoelectric.

References

  1. Bradai S., Naifar S., Viehweger C., Kanoun O., Litak G. Nonlinear analysis of an electrodynamic broadband energy harvester. European Physical Journal: Special Topics, Vol. 224, Issue 14, 2015, p. 2919-2927. [CrossRef]
  2. Cepnik C., Lausecker R., Wallrabe U. Review on electrodynamic energy harvesters; A classification approach laboratory of micro actuators. Micromachines, Vol. 4, 2013, p. 168-196. [Publisher]
  3. Bradai S., Naifar S., Keutel T., Kanoun O. Electrodynamic resonant energy harvester for low frequencies and amplitudes. IEEE International Instrumentation and Measurement Technology Conference, 2014. [CrossRef]
  4. Steven R., Henry A. A review of power harvesting using piezoelectric materials (2003-2006). Smart Materials and Structures, Vol. 16, Issue 3, 2007, https://doi.org/10.1088/0964-1726/16/3/R01. [CrossRef]
  5. Zhua D., Beeby S., Tudor J., White N., Harri N. Improving output power of piezoelectric energy harvesters using multilayer structures. Procedia Engineering, Vol. 25, 2011, p. 199-202. [Publisher]
  6. Roundy S., Wright P. K. A piezoelectric vibration based generator for wireless electronics. Smart Materials and Structures, Vol. 13, Issue 5, 2004, p. 1131-1142. [Publisher]
  7. Naifar S., Bradai S., Viehweger C., Kanoun O. Response analysis of a nonlinear magnetoelectric energy harvester under harmonic excitation. European Physical Journal: Special Topics, Vol. 224, Issue 14, 2015, p. 2897-2907. [CrossRef]
  8. Suna J., Song C., Yunhee C., Seungjun L., Hyang L., Chang Hyeon J. A low frequency vibration energy harvester using magnetoelectric laminate composite. Journal Smart Materials and Structures, Vol. 22, Issue 11, 2013, p. 115037. [CrossRef]
  9. Hakeim T., Zhuoxiang R. Finite element modeling of magnetoelectric laminate composites in considering nonlinear and load effects for energy harvesting. Journal of Alloys and Compounds, Vol. 615, 2014, p. 65-74. [Publisher]
  10. Bradai S., Naifar S., Kanoun O. Finite element analysis of combined magnetoelectric-electrodynamic vibration energy converter. Journal of Physics Conference Series, Vol. 660, Issue 1, 2015, p. 12111-12115. [CrossRef]
  11. Dibin Z., Michael J., Stephen P. Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Measurement Science and Technology, Vol. 21, Issue 2, 2010, p. 022001. [CrossRef]
  12. Tadesse Y., Zhang S., Priya S. Multimodal energy harvesting system: piezoelectric and electromagnetic. Journal of Intelligent Material Systems and Structures, Vol. 20, Issue 5, 2009, p. 625-632. [Publisher]
  13. Zhu D., Roberts S., Mouille T., Tudor M. J., Beeby S. P. General model with experimental validation of electrical resonant frequency tuning of electromagnetic vibration energy harvesters. Journal Smart Materials and Structures, Vol. 21, Issue 10, 2012, p. 105039. [Publisher]
  14. Shahruz S. M. Design of mechanical band-pass filters for energy scavenging. Journal of Sounds and Vibration, Vol. 292, Issues 3-5, 2006, p. 987-998. [Publisher]
  15. Qiu J., Chen H., Wen Y., Li P. Magnetoelectric and electromagnetic composite vibration energy harvester for wireless sensor networks. Journal of Applied Physics, Vol. 117, Issue 17, 2015, p. A331. [CrossRef]