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Abstract. The inverse acoustic scattering model for crack diagnosis is described by Helmholtz 
problem within mathematic framework and investigated for the sake of scientific computing. 
Minimizing the misfit from given measurements leads to an optimality condition-based imaging 
function which is used for non-iterative identification of the center of an unknown crack put in a 
test domain. The numerical tests are presented for the cracks of T-junction shape and are carried 
out based on the Petrov-Galerkin generalized FEM using wavelets basis and level-sets. This shows 
high-precision identification result and stability to noisy data of the diagnosis, which is illustrated 
for sound-soft as well as moderately sound-hard cracks when varying the coefficient of surface 
impedance. 
Keywords: crack, acoustic scattering, inverse Helmholtz problem, optimization, imaging, 
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1. Introduction 

In this contribution, the Helmholtz problem describing scattering of homogeneous acoustic 
medium that contains the single defect described by a cluster of cracks like T-junctions and 
characterized by surface impedance (thus, inhomogeneous medium) is considered. The inverse 
acoustic scattering problem is aimed at crack diagnosis motivated by applications to 
non-destructive testing with acoustic, electromagnetic, and elastic waves in engineering sciences.  

The classic approach to inverse scattering problems in the context of mathematical modeling 
was established based on the operator theory, which results in direct (non-iterative) solution 
methods such as factorization, sampling, enclosure, MUSIC-type algorithms, and alike. The 
classic analysis utilizes fundamental solutions and Green’s functions for respective boundary 
value problems. In comparison, iterative methods are mostly used for the reason of numerical 
computing of the solution.  

Recently, the shape optimization approach to identification of small geometric objects was 
developed based on the concept of topological derivative (when relating inhomogeneous medium 
to the background homogeneous one). The corresponding asymptotic analysis realizes the 
methods of singular perturbations. For the optimization approach adapted to inverse scattering 
problems, see the author’s works [1] related to sound-soft and sound-hard obstacles, and [2] for 
diagnosis of inhomogeneities in the background medium. The first-order topological derivative 
specified for geometric objects with real-valued refractive index was found in [3], and the 
high-order topological expansions were derived in [4].  

Following the shape optimization, the imaging function is determined by the incident 
background field and the known measurement. In [1] it was applied for identification of the center 
of impedance obstacles from boundary measurements, and in [2] for identification of the center 
of an inhomogeneity from the known far-field pattern. The latter work used an equivalent 
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formulation of the scattering problem in the form of a weakly singular integral equation of 
Lippmann-Schwinger. The numerical tests were carried out in 2d and 3d and demonstrated 
high-precision of the identification result and its stability with respect to the a-posteriori errors 
due to discretization as well as noisy data.  

In the current contribution we extend the optimality condition-based imaging technique and 
successfully apply numerical algorithm for diagnosis of cracks. For the variational theory of 
cracks, see [5].  

2. Theory 

The theoretical result is established in the following manner. A least square cost functional of 
the misfit from a given measurement is minimized. To define the set of feasible parameters we 
describe the unknown crack 𝜔 with the help of geometric variables of its shape, center, size, and 
surface impedance coefficient 𝛼 ∈ [0, ∞]. The weak variational formulation of the minimization 
problem with respect to these variables provides us with the zero-order necessary optimality 
condition, which is derivative-free. Further applying asymptotic arguments as the size tends to 
zero, for the sound-soft crack as 𝛼 → ∞ the optimality condition with respect to the center 𝐱∗ was 
derived in [1, 2] as follows: 𝐼௟(𝐱∗) = 0, (1) 

and the imaging function 𝐼௟ is defined for spatial points 𝐱 by the following imaginary part: 𝐼௟(𝐱) ∶= Im൫𝑢௟(𝐱) 𝑣௟(𝐱)൯. (2) 

In Eq. (2) the complex-valued function 𝑢௟(𝐱)  yields the incident field determined in the 
background homogeneous medium Ω  with the wave number 𝑘  that satisfies the Helmholtz 
equation:  ∇ଶ𝑢௟(𝐱) + 𝑘ଶ𝑢௟(𝐱) = 0,   𝐱 ∈ Ω, (3) 

where ∇ stands for the gradient vector and ∇ଶ for the Laplace operator. The other complex-valued 
function 𝑣௟(𝑥) solves the adjoint Helmholtz problem:  ∇ଶ𝑣௟(𝐱) + 𝑘ଶ𝑣௟(𝒙) = 0,   𝒙 ∈ Ω,    𝐧 ∙ ∇𝑣௟(𝐱) = 𝑢௟∗(𝐱) − 𝑢௟(𝐱),   𝐱 ∈ Γ, (4) 

for the measurement 𝑢௟∗(𝑥) given at the observation boundary Γ with the normal vector 𝐧, and 𝑣௟ 
in Eq. (2) is its complex conjugate.  

3. Methods 

Motivated by the special need of highly accurate and stable interpolation for the variational 
solutions of the acoustic scattering problem, in [6] we developed the concept of Petrov-Galerkin 
enrichment by a finite element method (FEM). To reduce the discretization error, we enriched the 
space of test functions based on necessary optimality conditions for interpolation properties. Using 
a Petrov-Galerkin approach, we suggested low order interpolation polynomials for the trial space, 
and we enriched the test space with high order shape functions. Henceforth, the resulting 
Petrov-Galerkin enrichment (PGE) has low computational costs, but it improves significantly the 
accuracy of interpolation which is of the seventh order. In [6] justification of PGE was provided 
by local wavelets with vanishing moments based on the Gegenbauer polynomial approximation. 
Practical formulas were derived for calculation of the system matrix for the reference Helmholtz 
equation given over uniform meshes in 2d and 3d. In the current work we apply the PGE algorithm 
for computation of the Helmholtz problems Eqs. (4) and (7).  
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From Eqs. (1) and (2) it follows that the true center 𝐱∗ belongs to zero-level set 𝑍௟ of 𝐼௟ that is: 𝐱∗ ∈ 𝑍௟ ∶= ሼ𝐱 |𝐼௟(𝐱) = 0}, (5) 

hence forces the numerical algorithm finding approximate center 𝐱௛∗  from multiple measurements 𝑢ଵ∗, 𝑢ଶ∗ , … and zero-level sets 𝑍ଵ௛, 𝑍ଶ௛, … by the mean of intersection: 𝐱௛∗ ∶= ሩ 𝑍௟௛௟ୀଵ,ଶ,…  , (6) 

where ℎ associates the mesh size appeared in numerical computation of problem Eq. (4).  

4. Results 

We present our numerical tests over the uniform quadrilateral grid of size ℎ = 2-7 in 2d 
implying the degrees of freedom DOF = 16641 in the computational domain Ω = (0, 1) × (0, 1). 
The crack of T-junction shape and of size 0.0194 posed at the center 𝐱∗ = (0.1467, 0.3750) is 
drawn in Fig. 1 and Fig. 2. The measurements 𝑢ଵ∗ and 𝑢ଶ∗  are synthesized by solving numerically 
the forward scattering problem for 𝑙 = 1, 2:  ∇ଶ𝑢௟∗(𝐱) + 𝑘ଶ𝑢௟∗(𝐱) = 0,   𝐱 ∈ Ω\𝜔,    𝐧 ∙ ∇(𝑢௟∗ − 𝑢௟)(𝐱) = 0,   𝐱 ∈ Γ, 𝐧 ∙ ∇𝑢௟∗(𝐱) + 𝛼𝑢௟∗(𝐱) = 0,    𝐱 ∈ 𝜔, (7) 

where the incident field is prescribed by the plane wave: 𝑢௟(𝐱) = 𝑒௜௞(𝐱భ ୡ୭ୱ ఏ೗ା𝐱మ ୱ୧୬ ఏ೗),    (𝑖ଶ = −1), (8) 

in the scattering directions 𝜃ଵ = 𝜋/8 and 𝜃ଶ = 𝜋/4, and the wave number 𝑘 = 𝜋/2 fixed.  
We distinguish the crack scattering by varying the surface impedance coefficient 𝛼 ∈ [0, ∞] 

in Eq. (7) thus approaching the sound-hard 𝛼 = 0 and the sound-soft 𝛼 = ∞ cases. The typical 
identification result of 𝐱௛∗  due to Eq. (6) for large 𝛼 is depicted in Fig. 1 as 𝛼 = 1.  

 
a) Wave direction 𝜋/8 

 
b) Wave direction 𝜋/4 

 
c) Zero level sets 

Fig. 1. Identification of the center of crack when impedance 𝛼 = 1 (approaching sound-soft case) 

In Fig. 2(a) and 2(b) respectively there are drawn the numerically computed imaging functions 𝐼ଵ௛ and 𝐼ଶ௛. Its zero-level sets 𝑍ଵ௛ and 𝑍ଶ௛ are utilized numerically by the narrow band technique and 
form the straight lines crossing the crack. Both the zero-level sets are depicted together in the 
computational test domain Ω in Fig. 2(c). Their intersection point 𝐱௛∗  is very close to the true 
center 𝐱∗ as can be verified in Table 1.  

For comparison, the cross-point 𝐱௛∗  for small 𝛼 is presented in Fig. 2 as 𝛼 = 0.01. This picture 
shows the error of approximation of 𝐱∗ caused by curving the zero-level sets.  

All the results of numerical tests are gathered together in Table 1 also quantifying the absolute 
error |𝐱∗ − 𝐱௛∗ | of the identification algorithm. In particular, in the last column we observe the 
relative error |𝐱∗ − 𝐱௛∗ | ℎ⁄  given with respect to the mesh-size ℎ. This fact clearly demonstrates 
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that for moderate 𝛼 ≥ 1 the Euclidean distance between the centers  𝐱∗ and 𝐱௛∗  is significantly less 
than the mesh-size (in the range of 1-30 % of ℎ), which definitively justifies the high-precision 
property of our algorithm.  

 
a) Wave direction 𝜋/8 

 
b) Wave direction 𝜋/4 

 
c) Zero level sets 

Fig. 2. Approximation of the center of crack when impedance 𝛼 = 0.01 (approaching sound-hard case) 

Table 1. Identification result of center 𝐱∗ = (0.1467, 0.3750) 
Surface impedance 𝛼 Approximate center 𝐱௛∗  Absolute error Error related to ℎ ∞ (0.1490, 0.3750) 0.0023 0.2984 

1000 (0.1489, 0.3750) 0.0022 0.2798 
100 (0.1479, 0.3750) 0.0012 0.1486 
10 (0.1459, 0.3750) 0.0008 0.0975 
1 (0.1479, 0.3752) 0.0012 0.1530 

0.1 (0.1592, 0.3906) 0.0200 2.5589 
0.01 (0.2031, 0.4280) 0.0774 9.9084 

0.0001 (0.2422, 0.4438) 0.0977 12.5074 

The error  |𝐱∗ − 𝐱௛∗ | versus 𝛼 from Table 1 is also illustrated for convenience in the log-log 
plot in Fig. 1. This curve exhibits the bounded limit behavior as 𝛼 → 0 and 𝛼 → ∞. 

 
Fig. 3. Identification error when varying impedance (sound-hard 𝛼 = 0 and sound-soft 𝛼 = ∞) 

5. Conclusions 

Although the inverse acoustic scattering theory of Section 2 is derived rigorously when getting 
to the limit of the size and the surface impedance coefficient, the computer simulation ensures that 
the imaging function in Eq. (2) is still acceptable for moderate values of the parameters. This 
conclusion holds true also for the diagnosis of cracks treated here.  
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