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Abstract. In this paper, a graphical tuning method for controllers parameters based on the 
open-loop fractional transfer function (FO-EOTF) method is proposed for fractional-order 
parameter uncertain multivariable system. The FO-EOTF method is proposed to transform the 
parameter uncertain fractional-order multivariable system into a set of independent parameter 
uncertain fractional-order univariate systems and determine the parameters regions of the 
univariate systems. The gain phase margin tester is used to further guarantee the robust 
performance of the controlled system. Finally, simulation result from the numerical simulation is 
presented to demonstrate the effectiveness of this method. 
Keywords: graphical tuning method, parameter uncertain, fractional-order, multivariable system. 

1. Introduction 

The industrial processes are often modeled by multivariate models. Fractional-order transfer 
function is always used to describe the industrial processes to improve the accuracy of multivariate 
system modeling. The parameters of models are usually uncertain due to the existence of 
measurement errors, machine aging and many other problems. Considering every input in the 
multivariable model may have impacts on outputs, the controller design of the multivariable model 
becomes very complex. Therefore, it is not feasible to treat the multivariable model as multiple 
univariate models directly. Meanwhile, the complexity of controller design for multivariable 
model will increase when the subsystems are fractional-order and the parameters of the 
multivariable system are uncertain. Multivariable system is confronted with decoupled issue when 
we design robust controller. 

In past decades, many decoupling methods for the multivariable systems have been proposed. 
In literature [1], the SLC method is proposed to design the controllers of the multivariable system 
one by one in a certain matrix. Unfortunately, this method is very strict on the setting order of the 
controller. Li has proposed the practical multivariable control based on inverted decoupling and 
decentralized ADRC [2]. The modeling uncertainties, that significantly affect the robustness of 
the inverted decoupling control approach, are treated by ADRC outside of the decoupling  
structure. Jobrun has proposed a method for MIMO processes based on the multi-scale control 
scheme. The method tuning the controller parameters with the balanced sensitivity function [3, 4]. 
However, this method cannot be applied directly to the parameters uncertain multivariable system, 
because the uncertain parameters will bring huge calculation pressure to decoupling. There are 
also many optimization algorithms that can turn the parameter of controllers [5-7]. However, when 
the parameter of the system are uncertain, these algorithms will not be able to calculate the 
controller parameters. Therefore, a simplified decoupling method is needed to settle the coupling 
problem. The concept of an effective open-loop transfer function (EOTF) has been introduced and 
studied to design the controllers for multivariable systems by several researchers [8-13]. The core 
idea is to transform the multivariable system into a set of independent univariate systems. This 
method simplified the design of the controller while solving the coupling problem of the 
multivariable system. Vu [12] has proposed a method to design the controller and showed 
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favorable control performance for multivariable system based on EOTF method and later studied 
by Jin [13].  

Compared with integer-order calculus, the use of fractional calculus can be more accurate 
description of complex dynamic systems. For the fractional-order characteristic polynomials with 
time delay terms, the characteristic polynomial of fractional-order delay system is not a standard 
characteristic polynomial because of the existence of delay term and fractional order, while a 
quasi-characteristic polynomial that composed of the fractional power of the complex variable s 
and the delay term 𝑒 . Therefore, the algebraic methods such as Routh-Hurwitz method, which 
is already used to test the stability of integer order linear control systems, cannot be directly 
applied to the stability criterion of fractional delay control systems. Of course, since the 
characteristic polynomial is a function of complex variables, the stability test principle of the 
existing integer order-delay system can be applied. The Kharitonov theorem has been proposed 
and studied to replace the parameter uncertain univariate system via multiple boundary equations 
for integer order linear control systems [14-17]. For each boundary equation, the region of the 
controller parameters satisfying certain robustness and stability can be determined. The 
intersection of all regions obtained by boundary equations is the controller parameter interval of 
the parameter uncertain univariate system. For fractional-order systems, Hamamci [18] proposed 
a method to find the stable region of fractional-order PID controller. Hamamci extended the 
D-factorization method for fractional-order PID controller to fractional-order domain and 
obtained the stable region of fractional PID. Using the existing stability theory of fractional 
calculus equation and Kharitonov boundary theory, Petráš et al. [19] proposed an algebraic method 
to test the stability of fractional linear system with uncertainties. Gao et al. [20] studied the relative 
stability of fractional-order systems and obtained the stable region of fractional-order PID 
controller. However, none of the above methods directly consider the uncertainty of the model 
parameters of the controlled object. Due to the working condition of the servo drive system, the 
model parameters also change with the system state. Therefore, the graphical tuning method 
should be based on the uncertain parameter model, otherwise, the set controller parameters will 
not meet the strong robustness requirements of the servo drive system, thus affecting the control 
accuracy. In response to this problem, Zheng et al. [21] proposed a graphical tuning method of 
fractional order proportional integral derivative (FOPID) controllers for fractional order uncertain 
system achieving robust D-stability. Hajiloo et al. [22] calculates the value range of the FOPID 
controller by multi-objective optimization. At the same time, Saidi et al. [23] gives the tuning 
method of the FOPID controller for fractional order uncertain system from the frequency domain. 
However, these methods are only for univariate systems. 

In this paper, a new method is proposed to determine the robustness stable region of the 
parameter uncertain fractional-order multivariable system based on the EOTF method and 
Kharitonov method. In particular, the proposed FO-EOTF method is used to transform the 
parameter uncertain multivariable system into a set of independent parameter uncertain univariate 
systems. Then, the independent parameter uncertain univariate systems is numerical 
implementation by Oustaloup algorithm. Finally, the Kharitonov method is introduced to 
determine the robustness stable region of the parameter uncertain univariate system. 

2. Effective open-loop fractional-order transfer function 

The entire closed-loop of the system is shown in Fig. 1, where 𝑅, 𝑈 and 𝑌 are the inputs, 
internal variables and outputs, respectively. 𝐹𝑐 is the PID controller. 𝐹 is the parameter uncertain 
fractional-order multivariable system. The model 𝐹 is shown as follow: 

𝐹 𝑠 = 𝑓 𝑠 ⋯ 𝑓 𝑠⋮ ⋱ ⋮𝑓 𝑠 ⋯ 𝑓 𝑠 . (1)
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Fig. 1. Closed-loop of the parameter uncertain fractional-order multivariable system 

The parameters in model 𝐹 𝑠  are uncertain in a certain interval. The general expression is: 

𝑓 𝑠 = 𝑁 𝑠𝐷 𝑠 𝑒 = 𝑎 , + 𝑎 , 𝑠 , + ⋯+ 𝑎 , 𝑠 ,𝑏 , + 𝑏 , 𝑠 , + ⋯+ 𝑏 , 𝑠 , 𝑒 , (2)

where 𝑁 𝑠  and 𝐷 𝑠  are the numerator terms and denominator terms of the transfer function 𝑓 𝑠 . 𝛼 ,  and 𝛽 ,  are the fractional-orders of numerator terms and denominator terms. 𝑎 ,  ℎ = 0,1,⋯ ,𝑚  and 𝑏 ,  𝑘 = 0,1,⋯ ,𝑛  are the coefficients of numerator terms and 
denominator terms, respectively, which satisfy 𝑎 , ≤ 𝑎 , ≤ 𝑎 ,  and 𝑏 , ≤ 𝑏 , ≤ 𝑏 , . 𝜏  
is the time delays term of 𝑓 𝑠  which satisfies 𝜏 ≤ 𝜏 ≤ 𝜏̅ .  

 
Fig. 2. The concept of the FO-EOTF 

The FO-EOTF method mainly utilizes the self-stabilizing ability of the system to solve the 
coupling problem, thereby reducing the difficulty of the coupling problem for the controller  
design. The FO-EOTF of loop 𝑖 is defined as the transfer function relating 𝑢  with 𝑦  where loop 𝑖 is open while all other loops are closed, as shown in Fig. 2, where 𝑟 , 𝑢  and 𝑦  are the input, 
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internal variable and output of loop 𝑖, respectively. 𝐹  is the remaining parts of 𝐹  without 𝑓 . 𝑓̅  
and 𝑓̅  are the column 𝑖 and row 𝑖 of 𝐹 without 𝑓 , respectively. 𝐹  is the remaining parts of 𝐹 
without column 𝑖 and row 𝑖. �̅� , 𝑢  and 𝑦  are the remaining parts of 𝑅, 𝑈 and 𝑌 without 𝑟 , 𝑢   
and 𝑦 . 

When 𝑟𝑖 = 0, 𝑢𝑖 can be written as: 𝑢𝑖 = −𝐹𝑐𝑖 𝑦𝑖 = −𝐹𝑐𝑖 𝑓𝑖𝑐𝑢𝑖 + 𝐹𝑖𝑢𝑖 . (3)

Eq. (3) can be simplified as: 𝑢𝑖 = −𝐹𝑐𝑖 𝐼 + 𝐹𝑖𝐹𝑐𝑖 −1 𝑓𝑖𝑐𝑢𝑖. (4)

From Fig. 2, it is clear that 𝑦𝑖 is related to 𝑢𝑖 and 𝑢𝑖. The corresponding relationship can be 
written as: 𝑦𝑖 = 𝑓𝑖𝑖𝑢𝑖 + 𝑓𝑖𝑟𝑢𝑖 = 𝑓𝑖𝑖 − 𝑓𝑖𝑟𝐹𝑐𝑖 𝐼 + 𝐹𝑖𝐹𝑐𝑖 −1 𝑓𝑖𝑐 𝑢𝑖. (5)

When the frequency is below the cut-off frequency [10], the relationship between 𝐹𝑖 and 𝐹𝑐𝑖  is: 𝐹𝑖𝐹𝑐𝑖 𝐼 + 𝐹𝑖𝐹𝑐𝑖 −1 = 𝐼. (6)

Eq. (5) can be written as: 𝑦𝑖 = 𝑓𝑖𝑖 − 𝑓𝑖𝑟 𝐹𝑖 −1𝑓𝑖𝑐 𝑢𝑖 = 𝑓𝑖𝑖𝑒𝑓𝑓 𝑠 𝑢𝑖. (7)

 
Fig. 3. The closed-loop of multivariable system after FO-EOTF 

The influences from the controllers of the other loops are eliminated when tuning the controller 
of loop 𝑖. Each loop can be obtained by Eq. (7). Thus, the entire multivariable system 𝐹 𝑠  can be 
equivalent to a diagonal matrix system 𝐹 𝑠 , which is: 

𝐹 𝑠 = 𝑓 𝑠 ⋱ 𝑓 𝑠 . (8)

From Fig. 3, we can know that the structure of the whole closed-loop control loop after 
replacing the parameter uncertain multivariable system 𝐹 𝑠  with the parameter uncertain 
equivalent model 𝐹 𝑠 . The equivalent model can effectively reduce the interference caused 
by the coupling factors between the systems, and also greatly reduce the amount of computation. 
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The equivalent transfer function 𝑓 𝑠  of loop 𝑖 in 𝐹 𝑠  is only related to all elements in the 
system in Eq. (7). Assuming the general expression as: 

𝑓 𝑠 = ℎ , 𝑠 𝑒 , + ℎ , 𝑠 𝑒 , + ⋯ℎ , 𝑠 𝑒 , + ℎ , 𝑠 𝑒 , + ⋯, (9)

where ℎ ,∗ 𝑠  is consisted of 𝑁  and 𝐷  in Eq.(2), 𝜏 ,∗  is consisted of 𝜏 . Similarly, the 
FO-EOTF model similar to Eq. (9) can be obtained for each parameter uncertain multivariable 
system. However, the general expression of 𝑓 𝑠  in Eq. (9) is inconvenient to analyze and 
calculate because of the excessive time delay. Thus, Eq. (9) can be simplified as: 

𝑓 𝑠 = 𝑁𝐷 𝑒 = 𝑎 , + 𝑎 , 𝑠 , + ⋯+ 𝑎 , 𝑠 ,𝑏 , + 𝑏 , 𝑠 , + ⋯+ 𝑏 , 𝑠 , 𝑒 , (10)

where 𝑎 ,∗ , 𝑏 ,∗ , 𝛼 , , 𝛽 ,  and 𝜏  are all uncertain in a certain interval. In literature [9], it is 
pointed out that when the numerator and denominator coefficients of the transfer function are 
fixed, the larger the delay term is, the smaller the stability domain. First, considering the 
parameters of non-time delay term in 𝑓 𝑠  are fixed, the time delays are uncertain in a certain 
interval. Meanwhile, the coupling relationships among the coefficients 𝜏 ,∗ of the time delays are 
ignored. Then, the coefficients 𝜏 , ∗ of the time delays in molecular term take the maximum value 𝜏̅ , ∗. On the contrary, coefficients 𝜏 , ∗ of the time delays in denominator term take the maximum 
value 𝜏 , ∗ . Then, find the maximum values of 𝜏̅ , ∗  and 𝜏 , ∗ , that are 𝑚𝑎𝑥 𝜏̅ , ∗  and 𝑚𝑎𝑥 𝜏 , ∗ , and extract them out. Finally, the remaining parts after extraction are approximated 
by Taylor expansion. Take the 2×2 parameter uncertain system as an example: 

𝐹 𝑠 = ⎣⎢⎢
⎡ 𝑘𝑇 𝑠 + 1 𝑒 𝑘𝑇 𝑠 + 1 𝑒𝑘𝑇 𝑠 + 1 𝑒 𝑘𝑇 𝑠 + 1 𝑒 ⎦⎥⎥

⎤, (11)

where 𝑘∗ ≤ 𝑘∗ ≤ 𝑘∗, 𝑇∗ ≤ 𝑇∗ ≤ 𝑇∗ and 𝜏∗ ≤ 𝜏∗ ≤ 𝜏̅∗. Through Eq. (7), the FO-EOTF of loop 1 can 
be written as: 

𝑓 𝑠 = ℎ , 𝑠 𝑒 , + ℎ , 𝑠 𝑒 ,ℎ , 𝑠 𝑒 , , (12)

where: ℎ , 𝑠 = 𝑘 𝑘 𝑇 𝑇 𝑠 + 𝑇 𝑠 + 𝑇 𝑠 + 1 , ℎ , 𝑠 = −𝑘 𝑘 𝑇 𝑇 𝑠 + 𝑇 𝑠 + 𝑇 𝑠 + 1 , ℎ , 𝑠 = 𝑘 (𝑇 𝑇 𝑇 𝑠 + 𝑇 𝑇 𝑠 + 𝑇 𝑇 𝑠        +𝑇 𝑇 𝑠 + 𝑇 𝑠 + 𝑇 𝑠 + 𝑇 𝑠 + 1), 𝜏 , = 𝜏 + 𝜏 ,      𝜏 , = 𝜏 + 𝜏 ,      𝜏 , = 𝜏 . 
Under the premise of ignoring the coupling relation of the time delay, the fluctuation interval 

of the time delay can be obtained, that are 𝜏 + 𝜏 ≤ 𝜏 , ≤ 𝜏̅ + 𝜏̅ , 𝜏 + 𝜏 ≤ 𝜏 , ≤𝜏̅ + 𝜏̅  and 𝜏 ≤ 𝜏 , ≤ 𝜏̅ . 
Find out 𝜏̅ , , 𝜏̅ ,  and 𝜏 ,  according to the rules mentioned above. Then, 𝑚𝑎𝑥 𝜏̅ , ∗  
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and 𝑚𝑎𝑥 𝜏 , ∗  can be obtained by comparison. For the convenience of display here, assuming 𝜏̅ + 𝜏̅ ≤ 𝜏̅ + 𝜏̅ , that means 𝜏̅ , ≤ 𝜏̅ , . Then, the remaining part of the extract is 
processed by Taylor expansion. Thus, Eq. (12) can be rewritten as: 

𝑓 (𝑠) = ℎ , (𝑠) + ℎ , (𝑠) 1 + 𝜏̅ , − 𝜏̅ , 𝑠ℎ , (𝑠) 𝑒 , , . (13)

In Eq. (13), the coefficient of the time delay is fixed, and the other coefficients are uncertain 
values in certain intervals. Due to the infinite dimensional properties of fractional-order operators, 
it cannot be directly numerically implemented. In this paper, the Oustaloup algorithm is used to 
approximate it by continuous transfer function. When using the Oustaloup algorithm to 
approximate fractional-order operator, the approximating frequency band and the order of the 
approximated transfer function need to select at first. Here, the approximating frequency band is 
assumed and the approximating order is 𝑛. The general transfer function of Oustaloup algorithm 
is expressed as: 

𝐺(𝑠) = 𝐾 𝑠 + 𝜔𝑠 + 𝜔 , (14)

where: 

𝜔 = 𝜔 𝜔𝜔 ( ) ,      𝜔 = 𝜔 𝜔𝜔 ( ) ,      𝐾 = 𝜔𝜔 𝜔𝜔 . 
Therefore, Eq. (10) can be approximated by Oustaloup algorithm, which shown in Eq. (15) as: 

𝑓 (𝑠) = 𝑎 , + 𝑎 , 𝑠 + ⋯+ 𝑎 , 𝑠 ∗𝑏 , + 𝑏 , 𝑠 + ⋯+ 𝑏 , 𝑠 ∗ 𝑒 . (15)

3. Kharitonov theorem 

It can be seen from Fig. 3, a multivariable system can be equivalent to multiple single variable 
systems after equivalent transformation. For general parameter uncertain univariate system, the 
corresponding boundary system can be obtained directly based on Kharitonov theorem. Then, the 
region of the controller parameters satisfying certain robustness for the parameter uncertain 
univariate system can be calculated. However, the premise of using the Kharitonov theorem is that 
the parameters of the uncertain model are linearly independent. The parameters 𝑎 ,∗  and 𝑏 ,∗  of the above FO-EOTF 𝑓 (𝑠) are determined by the coefficients in 𝑓 (𝑠), showing 
a linear correlation. In order to simplify the calculation, ignore the coupling between the 
parameters, readjust the intervals of the parameters as 𝑎 ,∗ ∈ 𝑎 ,∗ ,𝑎 ,∗  and 𝑏 ,∗ ∈ 𝑏 ,∗ , 𝑏 ,∗ . 

The controller used in this paper is PID controller. Taking loop 𝑖 as an example, the expression 
of the controller is: 𝑓 (𝑠) = 𝐾 , + 𝐾 ,𝑠 + 𝐾 , 𝑠, (16)

where 𝐾 , , 𝐾 ,  and 𝐾 ,  are the proportions, integrals and differential terms of controller 𝑓 (𝑠), 
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respectively. In order to satisfy the stability and certain robustness, a gain phase margin tester 𝐴𝑒  is added to the loop 𝑖, as shown in Fig. 4. Thus, the characteristic polynomial of the loop 𝑖 
can be obtained: Δ (𝑠) = 1 + 𝐴𝑒 𝑓 (𝑠)𝑓 (𝑠). (17)

 
Fig. 4. The closed-loop of multivariable system with gain phase margin tester 

Substituting Eqs. (15) and (16) into Eq. (17), we get: Δ (𝑠) = 𝑠 ⋅ 𝑏 , + 𝑏 , 𝑠 + ⋯+ 𝑏 , 𝑠 + 𝐴𝑒 ⋅ 𝐾 , 𝑠 + 𝐾 , + 𝐾 , 𝑠        ⋅ 𝑎 , + 𝑎 , 𝑠 + ⋯+ 𝑎 , 𝑠 ⋅ 𝑒 = 0. (18)

Eq. (18) can be written as: Δ (𝑠) = 𝑠 ⋅ 𝑏 , + 𝑏 , 𝑠 + ⋯+ 𝑏 , 𝑠 + 𝐴𝑒 ⋅ 𝐾 , 𝑠 + 𝐾 , + 𝐾 , 𝑠        ⋅ 𝑎 , + 𝑎 , 𝑠 + ⋯+ 𝑎 , 𝑠 ⋅ cos(𝜃 + 𝜔𝜏 ) − 𝑗sin(𝜃 + 𝜔𝜏 ) = 0. (19)

Further algebraic manipulation of Eq. (19) results as: 

Δ (𝑠) = 𝑞 , + 𝑗𝑟 , 𝑠 = 0, (20)

where 𝑞 ,  and 𝑟 ,  are the real and imaginary parts of 𝑠  in Δ (𝑠) respectively, while 𝑞 ,  and 𝑟 ,  
are uncertain but bounded. Thus, Eq. (19) can be rewritten as: 

Δ (𝑠) = 𝑞 , , 𝑞 , + 𝑗 𝑟 , , �̅� , 𝑠 = 0. (21)

When Eq. (21) satisfies the Hurwitz stability, the entire uncertain system satisfies the stability 
condition. In order to further simplify the computation, the Kharitonov theorem is used to deal 
with the Eq. (21). The theorem indicates that Eq. (21) can be replaced by a set of boundary 
equations: Δ , = 𝑞 , + 𝑗𝑟 , + 𝑞 , + 𝑗�̅� , 𝑠 + 𝑞 , + 𝑗�̅� , 𝑠 + 𝑞 , + 𝑗𝑟 , 𝑠 + ⋯, (22)Δ , = 𝑞 , + 𝑗�̅� , + 𝑞 , + 𝑗𝑟 , 𝑠 + 𝑞 , + 𝑗𝑟 , 𝑠 + 𝑞 , + 𝑗�̅� , 𝑠 + ⋯, (23)Δ , = 𝑞 , + 𝑗𝑟 , + 𝑞 , + 𝑗𝑟 , 𝑠 + 𝑞 , + 𝑗�̅� , 𝑠 + 𝑞 , + 𝑗�̅� , 𝑠 + ⋯, (24)Δ , = 𝑞 , + 𝑗�̅� , + 𝑞 , + 𝑗�̅� , 𝑠 + 𝑞 , + 𝑗𝑟 , 𝑠 + 𝑞 , + 𝑗𝑟 , 𝑠 + ⋯, (25)Δ , = 𝑞 , + 𝑗𝑟 , + 𝑞 , + 𝑗𝑟 , 𝑠 + 𝑞 , + 𝑗�̅� , 𝑠 + 𝑞 , + 𝑗�̅� , 𝑠 + ⋯, (26)Δ , = 𝑞 , + 𝑗�̅� , + 𝑞 , + 𝑗�̅� , 𝑠 + 𝑞 , + 𝑗𝑟 , 𝑠 + 𝑞 , + 𝑗𝑟 , 𝑠 + ⋯, (27)Δ , = 𝑞 , + 𝑗𝑟 , + 𝑞 , + 𝑗�̅� , 𝑠 + 𝑞 , + 𝑗�̅� , 𝑠 + 𝑞 , + 𝑗𝑟 , 𝑠 + ⋯, (28)

−+
ir

jAe θ−
cif fo eff
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Δ , = 𝑞 , + 𝑗�̅� , + 𝑞 , + 𝑗𝑟 , 𝑠 + 𝑞 , + 𝑗𝑟 , 𝑠 + 𝑞 , + 𝑗�̅� , 𝑠 + ⋯. (29)

For each boundary equation Δ∗, , there is a set of controllers 𝑓 ∗, (𝑠) that can make it stable. 
The intersection of controller parameters regions corresponding to each boundary equation is the 
final region of the controller parameters of the loop 𝑖 , that is 𝑓 (𝑠) = ⋂𝑓 ∗, (𝑠). Due to the 
existence of the gain phase margin tester 𝐴𝑒 , the controller 𝑓 (𝑠) can make the equivalent 
open-loop transfer function 𝑓 (𝑠) stable while satisfying certain robustness. 

Let 𝑠 = 𝑗𝜔, the Eqs. (22)-(29) can be written as: Δ∗, (𝜔) = Δ ∗, (𝜔) + 𝑗Δ ∗, (𝜔) = 0, (30)

where Δ ∗, (𝜔)  and Δ ∗, (𝜔)  are the real and imaginary parts of Δ∗, (𝜔) , respectively. Let Δ ∗, (𝜔) and Δ ∗, (𝜔) equal to zero: Δ ∗, (𝜔) = 𝐵 ∗, (𝜔) ⋅ 𝐾 ∗, + 𝐶 ∗, (𝜔) ⋅ 𝐾 ∗, + 𝐷 ∗, (𝜔) = 0, (31)Δ ∗, (𝜔) = 𝐵 ∗, (𝜔) ⋅ 𝐾 ∗, + 𝐶 ∗, (𝜔) ⋅ 𝐾 ∗, + 𝐷 ∗, (𝜔) = 0, (32)

where 𝐵 ∗, , 𝐵 ∗, , 𝐶 ∗, , 𝐶 ∗, , 𝐷 ∗,  and 𝐷 ∗,  are the remaining parts after the common factor is 
extracted. Using the Cramer rule, the equations about 𝐾 ∗,  and 𝐾 ∗,  can be obtained: 

𝐾 ∗, = 𝐶 ∗, (𝜔) ⋅ 𝐷 ∗, (𝜔) − 𝐶 ∗, (𝜔) ⋅ 𝐷 ∗, (𝜔)𝐵 ∗, (𝜔) ⋅ 𝐶 ∗, (𝜔) − 𝐵 ∗, (𝜔) ⋅ 𝐶 ∗, (𝜔), (33)𝐾 ∗, = 𝐵 ∗, (𝜔) ⋅ 𝐷 ∗, (𝜔) − 𝐵 ∗, (𝜔) ⋅ 𝐷 ∗, (𝜔)𝐵 ∗, (𝜔) ⋅ 𝐶 ∗, (𝜔) − 𝐵 ∗, (𝜔) ⋅ 𝐶 ∗, (𝜔) . (34)

When the parameters in the right part of Eqs. (33) and (34) are fixed, a boundary line can be 
calculated in the 𝐾 , − 𝐾 ,  plane. The controller parameters corresponding to the point in this line 
can make the system in Fig.4 critical stable. Then, it is necessary to determine the regions of the 
controllers parameters by using the Jacobian matrix of Eqs. (33) and (34). The Jacobian matrix 
are: 𝐽∗, = 𝐵 ∗, 𝐶 ∗,𝐵 ∗, 𝐶 ∗, = 𝐵 ∗, (𝜔) ⋅ 𝐶 ∗, (𝜔) − 𝐶 ∗, (𝜔) ⋅ 𝐵 ∗, (𝜔). (35)

When 𝐽∗, > 0, the left of the stable line facing the direction in which 𝜔 increases is the stable 
regions. When 𝐽∗, < 0, the right of the stable line facing the direction in which 𝜔 increases is the 
stable regions. In this way, the stability interval 𝑓 ∗, (𝑠)  for each boundary equation can be 
determined. Thus, the final stable range 𝑓 (𝑠) = ⋂𝑓 ∗, (𝑠) can be easily obtained. 

4. Simulation 

Assuming the model 𝐹 in Fig. 1 is a 2×2 parameter uncertain fractional-order multivariable: 

𝐹(𝑠) = ⎣⎢⎢
⎡ 𝐾𝑇 𝑠 . 𝑒 𝐾𝑇 𝑠 𝑒𝐾𝑇 𝑠 𝑒 𝐾𝑇 𝑠 . 𝑒 ⎦⎥⎥

⎤, (36)

where 𝐾 ∈  [0.9, 1], 𝐾 ∈  [0.8, 0.9], 𝐾 ∈  [1, 1.1], 𝐾 ∈  [0.9, 1.1], 𝑇 ∈  [1.7, 1.9],  𝑇 ∈  [1.9, 2], 𝑇 ∈  [1.5, 1.6], 𝑇 ∈  [1.6, 1.7], 𝜏 ∈  [0.45, 0.5], 𝜏 ∈  [0.4, 0.45],  
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𝜏 ∈ [0.25, 0.3] and 𝜏 ∈  [0.2, 0.25]. Assuming the loops need to satisfy the conditions of  𝐺𝑀 ≥ 8 dB and 𝑃𝑀 ≥ 30°. The final robust stable region of the loops can be calculated, as shown 
in Figs. 5-6. 

 
Fig. 5. Robust stable boundary lines of Δ1 

 
Fig. 6. Robust stable boundary lines of Δ2 

 
Fig. 7. Responses of controllers 𝐴1 and 𝐴2 
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Three sets of controllers are selected 𝐴1 (𝐾𝑝 = 0.2, 𝐾𝑖 = 0.01, 𝐾𝑑 = 0.03), 𝐵1  (𝐾𝑝 = 0.2, 𝐾𝑖 = 0.08, 𝐾𝑑 = 0.04), 𝐶1 (𝐾𝑝 = 1, 𝐾𝑖 = 0.5, 𝐾𝑑 = 0.1), 𝐴2 (𝐾𝑝 = 0.25, 𝐾𝑖 = 0.02, 𝐾𝑑 = 0.03), 𝐵2 (𝐾𝑝 =  0.25, 𝐾𝑖 = 0.05, 𝐾𝑑 = 0.06) and 𝐶2 (𝐾𝑝 = 0.5, 𝐾𝑖 = 0.5, 𝐾𝑑 = 0.05) to verify the 
effectiveness of this method. Where, 𝐴1 and 𝐴2 are in robust stable region, 𝐵1 and 𝐵2 are in the 
stable region but outside of the robust stable region, 𝐶1 and 𝐶2 are outside the stable region. The 
responses of controllers𝐴1 and 𝐴2 are shown in Fig. 7. The responses of controllers 𝐵1 and 𝐵2 
are shown in Fig. 8. The responses of controllers 𝐶1 and 𝐶2 are shown in Fig. 9. 

 
Fig. 8. Responses of controllers 𝐵1 and 𝐵2 

 
Fig. 9. Responses of controllers 𝐶1 and 𝐶2 
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From Figs. 7-9, it clear that the controllers 𝐴1, 𝐴2, 𝐵1 and 𝐵2 can stable the system, but the 
controllers 𝐶1 and 𝐶2 cannot stable the system. In order to verify the effectiveness of the proposed 
method, the gain and phase margins of the controllers 𝐴1, 𝐴2, 𝐵1 and 𝐵2 are calculated to verify 
the robustness. 

 
Fig. 10. Bode plot of the controller 𝐴1 and 𝐴2 

 
Fig. 11. Bode plot of the controller 𝐵1 and 𝐵2 

Fig. 10 shows the gain and phase margins of controller 𝐴1 and 𝐴2. The gain margin of 
controller 𝐴1 is in 28.7-31.6 dB, the phase margin is around 58 deg. The gain margin of controller 𝐴2 is in 32.9-36.7 dB, and the phase margin is around 51 deg. Fig. 11 shows the gain and phase 
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margins of controller 𝐵1 and 𝐵2. The gain margin of controller 𝐵1 is around –18.4 dB, the phase 
margin is in 15.9-18.2 deg. The gain margin of controller 𝐵2 is around –21 dB, and the phase 
margin is in 32.5-37.1deg, which does not meet the limited conditions. Therefore, the controller 
in the robust stability region can make the system satisfy robustness. 

5. Conclusions 

In this paper, a unique graphical method are used to design the PID controller of the parameter 
uncertain fractional-order multivariable system. FO-EOTF is used to decouple multivariable 
systems and transform the multivariable system into a set of independent univariate systems. 
Based on Kharitonov theorem, a set of boundary systems is used to replace parametric uncertain 
fractional-order univariate systems. Then, the region of the PID controller parameters can be 
determined. In order to consider the robustness of the system, the gain phase margin tester is 
introduced. From the example, it can be seen that the proposed method can calculate the region of 
the PID controller parameters of the parameter uncertain fractional-order multivariable system. 
The parameters in the robust stable region can stabilize the system and meet certain robustness 
requirements. The parameters of the controller outside the robust stable region do not meet the 
requirements. The unique graphical approach helps to better understand how to determine the area 
of controller parameters. 
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