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Abstract. In this paper, a theoretical analysis is carried out to investigate the effect of linear 
variation in density and circular variation in Poisson’s ratio on time period of frequency modes of 
rectangular plate with variable thickness under temperature field. The thickness variation is 
considered to be circular and temperature variation on the plate is assumed to be bi-linear. 
Rayleigh Ritz method is used to solve the differential equation. All the results (time period for 
first two modes of vibration) are presented with the help of tables. 
Keywords: density, Poisson’s ratio, rectangular plate, time period. 

1. Introduction 

The study of vibration of non-homogeneous plate is essential in these days because 
non-homogeneous plate with variable thickness are used in almost all engineering structures such 
as power plants, wings of an aircrafts, machines, bridges etc. Plates with variable thickness along 
with non-homogeneity have great impact when compared to homogeneous plate with uniform 
thickness because of their efficiency and strength. The first few modes of vibration provide us 
good information about the behavior of systems/structures. Therefore, in order to design perfect 
structures/systems, it is essential to determine natural frequencies and mode shapes. A significant 
work has been reported in these directions. 

The natural vibration of cantilever plates with variable thickness is analyzed by using mixed 
boundary grid method (FBGM) [1] and obtained characteristic equation and frequency  
parameters. A model [2] is presented to analyze the nonlinear vibrations of visco elastic thin 
rectangular plates by using von Kármán nonlinear strain–displacement relationships and obtained 
fundamental modes of a simply supported square plate with immovable edges. The nonlinear 
damping of visco elastic rectangular plate [3] is studied and equation of motion is derived using 
Lagrange equations. The results are also obtained theoretically as well as experimentally. 
Vibration analysis of rectangular plates with rectangular cutouts is investigated by using extended 
Hencky bar-net method (HBM) [4]. Method of reverberation ray matrix (MRRM) and golden 
section search (GSS) algorithm [5] is applied to obtain the exact solution of rectangular plates 
with arbitrary boundary conditions. Accurate analytic solutions for natural vibration of thick 
rectangular plates with a free edge is presented in [6]. Natural vibration of thick rectangular plate 
[7] without two parallel simply supported edges is studied and new analytic solutions are obtained. 
The effect of crack defects and temperature on vibration of thin isotropic and orthotropic 
rectangular plates is studied in [8]. The effect of circular variation in density and exponential 
variation in Poisson’s ratio on vibrational frequency of parallelogram plate under temperature field 
is examined in [9]. The effect of two-dimensional thickness and temperature effect on natural 
vibration of parallelogram plate on clamped edges is studied using Rayleigh Ritz method [10]. 
Rayleigh Ritz method [11] is used to analyze the natural vibration of isotropic rectangular plate 
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with circular variation in thickness and exponential variation in Poisson’s ratio under temperature 
field. Free vibration of moderately thick laminated composite rectangular plate with non-uniform 
boundary conditions is presented by using an improved Fourier series method [12]. Closed-form 
solution [13] is presented to study the effects of rotary inertia and shear deformation on frequency 
of natural vibration problems. A mathematical model [14] is presented to analyze the free vibration 
of rectangular plates with various rectangular cutouts and variable thickness. 

In this study, authors show the effect of linear variation in density and circular variation in 
Poisson’s ratio on time period of vibration of non homogeneous rectangular plate on clamped 
edges. Authors also calculate the time period of vibration corresponding to circular variation in 
thickness and bi linear variation in temperature. The results are presented with the help of tables. 

2. Analysis and assumptions 

The differential equation for transverse motion of the plate with variable 𝐷ଵ and 𝜈 i.e., flexural 
rigidity and Poisson’s ratio is given by: 

ቈ𝐷ଵ ቆ∂ସΦ∂𝜁ସ + 2 ∂ସΦ∂𝜁ଶ ∂𝜓ଶ + ∂ସΦ∂𝜓ସ + ∂ଶ𝜈∂𝜁ଶ ∂ଶΦ∂𝜓ଶቇ + 2 ∂𝐷ଵ∂𝜁 ቆ∂ଷΦ∂𝜁ଷ + ∂ଷΦ∂𝜁 ∂𝜓ଶ + ∂𝜈∂𝜁 ∂ଶΦ∂𝜓ଶቇ      + ∂ଶ𝐷ଵ∂𝜁ଶ ቆ∂ଶΦ∂𝜁ଶ + 𝜈 ∂ଶΦ∂𝜓ଶቇ + 2 ∂𝐷ଵ∂𝜓 ቆ∂ଷΦ∂𝜓ଷ + ∂ଷΦ∂𝜓 ∂𝜁ଶ − ∂𝜈∂𝜁 ∂ଶΦ∂𝜁 ∂𝜓ቇ      + ∂ଶ𝐷ଵ∂𝜓ଶ ቆ∂ଶΦ∂𝜓ଶ + 𝜈 ∂ଶΦ∂𝜁ଶ ቇ + 2ሺ1 − 𝜈ሻ ∂ଶ𝐷ଵ∂𝜁 ∂𝜓 ∂ଶΦ∂𝜁 ∂𝜓቉ − 𝜌𝑙𝜔ଶΦ = 0, (1) 

where Φ is known as deflection function. The expression for flexural rigidity is 𝐷ଵ = 𝐸𝑙ଷ 12ሺ1 − 𝜈ଶሻ⁄ , where 𝐸, 𝑙 are known as Young’s modulus and thickness of the plate. 
In order to avoid complexity, the present study requires some assumptions as: 
a) Since the plate has variable thickness 𝑙 , therefore authors considered one dimensional 

circular variation in thickness as shown in Fig. 1 as: 

𝑙 = 𝑙଴ ቎1 + 𝛽 ቌ1 − ඨ1 − 𝜁ଶ𝑎ଶቍ቏, (2) 

where 𝛽, (0 ≤ 𝛽 ≤ 1) is known as tapering parameter. Thickness of plate becomes constant at 𝜁 = 0. 
b) For non-homogeneity consideration, authors assumed one dimensional linear variation in 

density and one dimensional circular variation in Poisson’s ratio as: 𝜌 = 𝜌଴ ൤1 + 𝑚ଵ 𝜁𝑎൨, (3) 

𝜈 = 𝜈଴ ቎1 − 𝑚ଶ ቌ1 − ඨ1 − 𝜁ଶ𝑎ଶቍ቏, (4) 

where 𝑚ଵ , (0 ≤ 𝑚ଵ  ≤ 1) and 𝑚ଶ , (0 ≤ 𝑚ଶ  < 1) are known as non-homogeneity constants 
corresponding to density and Poisson’s ratio. 

c) The plate is subjected to steady two-dimensional linear temperature distributions as: 

𝜏 = 𝜏଴ ൬1 − 𝜁𝑎൰ ൬1 − 𝜓𝑏൰, (5) 
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where 𝜏 and 𝜏଴ denotes the temperature excess above the reference temperature on the plate at any 
point and at the origin respectively. The temperature dependence modulus of elasticity for 
engineering structures is given by: 𝐸 = 𝐸଴ሺ1 − 𝛾𝜏ሻ, (6) 

where 𝐸଴ is the Young’s modulus at mentioned temperature (i.e., 𝜏 = 0) and 𝛾 is called slope of 
variation. 

Using Eq. (5), Eq. (6) becomes: 

𝐸 = 𝐸଴ ൤1 − 𝛼 ൜1 − 𝜁𝑎ൠ ൜1 − 𝜓𝑏ൠ൨, (7) 

where 𝛼, (0 ≤ 𝛼 < 1) is called temperature gradient, which is the product of temperature at origin 
and slope of variation i.e., 𝛼 = 𝛾𝜏଴.  

 
Fig. 1. Rectangular plate with one dimensional circular variation 

3. Solution for frequency equation and time period 

We are using Rayleigh Ritz technique (i.e., maximum strain energy 𝑉௦ must equal to maximum 
kinetic energy 𝑇௦ ) in order to obtain frequency equation and time period for both modes of 
vibrations. Therefore, we must have: 𝛿ሺ𝑉௦ − 𝑇௦ሻ = 0. (8) 

Here the expression for 𝑉௦ and 𝑇௦ are given by: 

𝑉௦ = 12 න௔
଴   න௕

଴ 𝐷ଵ × ൥ቆ∂ଶΦ∂𝜁ଶ ቇଶ + ቆ∂ଶΦ∂𝜓ଶቇଶ + 2𝜈 ∂ଶΦ∂𝜁ଶ ∂ଶΦ∂𝜓ଶ + 2ሺ1 − 𝜈ሻ ቆ ∂ଶΦ∂𝜁 ∂𝜓ቇଶ൩ 𝑑𝜓𝑑𝜁, (9) 

𝑇௦ = 12 𝜔ଶ න  න 𝜌𝑙Φଶ𝑑𝜓௕
଴ 𝑑𝜁௔

଴ . (10) 

Here, we are computing time period on C-C-C-C condition (i.e., all the four edges are clamped), 
therefore the boundary conditions are: 

Φሺ𝜁, 𝜓ሻ = ∂Φሺ𝜁, 𝜓ሻ∂𝜁 = 0,    𝜁 = 0, 𝑎,     Φሺ𝜁, 𝜓ሻ = ∂Φሺ𝜁, 𝜓ሻ∂𝜓 = 0,   𝜓 = 0, 𝑏. (11) 

Therefore, deflection function (i.e., maximum displacement) which satisfy boundary condition 
given in Eq. (11) is taken as: 

Φሺ𝜁, 𝜓ሻ = ൬𝜁𝑎൰ଶ ൬𝜓𝑏൰ଶ ൬1 − 𝜁𝑎൰ଶ ൬1 − 𝜓𝑏൰ଶ ൤Ωଵ + Ωଶ ൬𝜁𝑎൰ ൬𝜓𝑏൰ ൬1 − 𝜁𝑎൰ ൬1 − 𝜓𝑏൰൨, (12) 

where Ωଵ and Ωଶ are arbitrary constants.  
Now converting 𝜁 and 𝜓 into non-dimensional variable as: 
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𝜁ଵ = 𝜁𝑎,   𝜓ଵ = 𝜓𝑎. (13) 

Using Eqs. (2)-(4), (7), (9), (10) and (13), Eq. (8) becomes: 𝛿ሺ𝑉௦∗ − 𝜆ଶ𝑇௦∗ሻ = 0, (14) 

where: 

𝑉௦∗ = නଵ
଴ න௕௔଴ ⎣⎢⎢

⎢⎡
⎩⎪⎨
⎪⎧ቂ1 − 𝛼ሼ1 − 𝜁ଵሽ ቄ1 − 𝑎𝜓ଵ𝑏 ቅቃ ቈ1 + 𝛽 ቆ1 − ට1 − 𝜁ଵଶቇ቉ଷ

1 − 𝜈଴ଶ ቈ1 − 𝑚ଶ ቆ1 − ට1 − 𝜁ଵଶቇ቉ଶ ⎭⎪⎬
⎪⎫ 

     ∙ ⎣⎢⎢
⎢⎡ቆ∂ଶΦ∂𝜁ଵଶቇଶ + ቆ ∂ଶΦ∂𝜓ଵଶቇଶ + 2𝜈଴ ቈ1 − 𝑚ଶ ቆ1 − ට1 − 𝜁ଵଶቇ቉ ∂ଶΦ∂𝜁ଵଶ ∂ଶΦ∂𝜓ଵଶ+2 ቆ1 − 𝜈଴ ቈ1 − 𝑚ଶ ቆ1 − ට1 − 𝜁ଵଶቇ቉ቇ ቆ ∂ଶΦ∂𝜁ଵ ∂𝜓ଵቇଶ ⎦⎥⎥

⎥⎤
⎦⎥⎥
⎥⎥⎤ 𝑑𝜓ଵ𝑑𝜁ଵ, 

 

𝑇௦∗ = න  න [1 + 𝑚ଵ𝜁ଵ] ቈ1 + 𝛽 ቆ1 − ට1 − 𝜁ଵଶቇ቉ Φଶ𝑑𝜓ଵ௕௔଴ 𝑑𝜁ଵଵ
଴ ,  

and 𝜆ଶ = 12𝜌଴𝜔ଶ𝑎ସ 𝐸଴𝑙଴ଶ⁄  is known as frequency parameter. Eq. (14) consists of two unknown 
constants Ωଵ  and Ωଶ  (because of substitution of deflection function Φሺ𝜁, 𝜓ሻ) . These two 
unknowns could be calculated as follows: ∂∂Ω௡ ሺ𝑉௦∗ − 𝜆ଶ𝑇௦∗ሻ = 0,   𝑛 = 1,2. (15) 

After simplifying Eq. (15), we get system of homogeneous equations as: 𝑐ଵଵΩଵ + 𝑐ଵଶΩଶ = 0,𝑐ଶଵΩଶ + 𝑐ଶଶΩଶ = 0. (16) 

To obtain non-zero solution (frequency equation), the determinant of coefficient matrix obtain 
from Eq. (16) must be zero i.e., ቚ𝑐ଵଵ 𝑐ଵଶ𝑐ଶଵ 𝑐ଶଶቚ = 0. (17) 

From Eq. (17), we get a quadratic equation from which we get frequency modes. 
The time period of frequency modes is calculated as: 𝐾 = 2𝜋𝜆 , (18) 

where 𝜆 is frequeny modes obtained from Eq. (17). 

4. Results and discussion 

The effect of variation of different plate parameters (non-homogeneity constants 𝑚ଵ , 𝑚ଶ , 
thermal gradient 𝛼  and tapering parameter 𝛽 ) on time period (in seconds) of vibrations are 
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calculated for fixed value of aspect ratio 𝑎/𝑏 = 1.5 and presented in tabular form. 
Table 1 provides the time period 𝐾 of vibration corresponding to non-homogeneity 𝑚ଵ for two 

cases i.e., 𝛽 = 𝑚ଶ = 𝛼 = 0.2 and 𝛽 = 𝑚ଶ = 𝛼 = 0.6. From Table 1, we can see that time period 
is increasing with the increasing value of non-homogeneity constant 𝑚ଵ for both the cases. While 
the time period is decreasing with the combined increasing value of taper constant 𝛽 , 
non-homogeneity 𝑚ଶ and thermal gradient 𝛼. 

Table 2 accommodates the time period 𝐾 corresponding to non-homogeneity constant 𝑚ଶ for 
two different cases i.e., 𝑚ଵ = 𝛽 = 𝛼 =  0.2 and 𝑚ଵ = 𝛽 = 𝛼 =  0.6. Here, time period is 
increasing (almost constant) for first case. But for second case, time period is increasing for first 
mode and time period is decreasing for second mode. The time period is also decreasing when the 
combined value of thermal gradient 𝛼, taper constant 𝛽 and non-homogeneity constant 𝑚ଵ varies 
from 0.2 to 0.6. 

Table 1. Non-homogeneity 𝑚ଵ vs. time period 𝐾[𝑠] for 𝑎/𝑏 = 1.5 𝑚ଵ 𝛼 = 𝛽 = 𝑚ଶ = 0.2 𝛼 = 𝛽 = 𝑚ଶ = 0.6 𝜆ଵ 𝜆ଶ 𝜆ଵ 𝜆ଶ 
0.0 0.02214 0.08729 0.01848 0.07226 
0.2 0.02323 0.09157 0.01941 0.07584 
0.4 0.02428 0.09566 0.02030 0.07925 
0.6 0.02528 0.09959 0.02115 0.08253 
0.8 0.02646 0.10336 0.02197 0.08568 
1.0 0.02717 0.10701 0.02276 0.08872 

Table 2. Non-homogeneity 𝑚ଶ vs. time period 𝐾[𝑠] for 𝑎/𝑏 = 1.5 𝑚ଶ 𝛼 = 𝛽 = 𝑚ଵ = 0.2 𝛼 = 𝛽 = 𝑚ଵ = 0.6 𝜆ଵ 𝜆ଶ 𝜆ଵ 𝜆ଶ 
0.0 0.02322 0.09155 0.02113 0.08272 
0.2 0.02323 0.09157 0.02114 0.08269 
0.4 0.02324 0.09158 0.02114 0.08263 
0.6 0.02325 0.09156 0.02115 0.08253 
0.8 0.02326 0.09151 0.02115 0.08239 

Table 3. Taper constant 𝛽 vs. time period 𝐾[𝑠] for 𝑎/𝑏 = 1.5 𝛽 𝛼 = 𝑚ଵ = 𝑚ଶ = 0.4 𝛼 = 𝑚ଵ = 𝑚ଶ = 0.8 𝜆ଵ 𝜆ଶ 𝜆ଵ 𝜆ଶ 
0.0 0.02837 0.11209 0.03252 0.12384 
0.2 0.02492 0.09815 0.02851 0.11193 
0.4 0.02211 0.08677 0.02524 0.09864 
0.6 0.01979 0.07741 0.02256 0.08776 
0.8 0.01786 0.06963 0.02033 0.07877 
1.0 0.01623 0.06310 0.01846 0.07125 

Table 4. Thermal gradient 𝛼 vs. time period 𝐾[𝑠] for 𝑎/𝑏 = 1.5 𝛼 𝛽 = 𝑚ଵ = 𝑚ଶ = 0.4 𝛽 = 𝑚ଵ = 𝑚ଶ = 0.8 𝜆ଵ 𝜆ଶ 𝜆ଵ 𝜆ଶ 
0.0 0.02107 0.08273 0.01848 0.07183 
0.2 0.02157 0.08468 0.01890 0.07339 
0.4 0.02211 0.08677 0.01934 0.07505 
0.6 0.02269 0.08903 0.01982 0.07684 
0.8 0.02333 0.09148 0.02033 0.07877 

Time period 𝐾 corresponding to taper constant 𝛽 is tabulated in Table 3 for the two different 
cases i.e., 𝑚ଵ = 𝑚ଶ = 𝛼 =  0.4 and 𝑚ଵ = 𝑚ଶ = 𝛼 =  0.8. Time period is decreasing with the 
increasing value of taper constant 𝛽 for both the cases. When we move from first case to second 
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case, the time period is increasing with the increasing value of taper constant 𝛽. 
Table 4 presents the time period 𝐾 corresponding to thermal gradient 𝛼 for two different cases 

i.e., 𝑚ଵ = 𝑚ଶ = 𝛽 = 0.4 and 𝑚ଵ = 𝑚ଶ = 𝛽 = 0.8. From Table 4, we conclude that time period 
is increasing with the increasing value of thermal gradient 𝛼 for both the cases and decreasing 
with the combined increasing value of taper constant 𝛽 and non-homogeneity constants 𝑚ଵ, 𝑚ଶ. 

5. Conclusions 

The present study reveals the effect of plate parameters especially density and Poisson’s ratio 
on time period of vibration of clamped rectangular plate with variable thickness under temperature 
field. The rate of increment in time period corresponding to non-homogeneity 𝑚ଵ  (linear  
variation) is higher than the rate of increment in time period corresponding to non-homogeneity 𝑚ଶ (circular variation). Initially, time period (at 𝑚ଶ = 0) is high in case of circular variation in 
non-homogeneity when compared to time period (at 𝑚ଵ =  0) in case of linear variation in 
non-homogeneity. The time period is decreasing corresponding to circular variation in thickness 
and increasing corresponding to linear temperature variation on plate. 
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