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Abstract. Shock signal features must be extracted for use in pattern recognition or fault diagnosis. 
In this work, we proposed a method for the feature extraction of shock signals, which are vibration 
signals that change faster and have larger amplitude ranges than general signals. First, we proposed 
the concepts of amplitude density for monotonic functions and piecewise monotonic functions. 
On the basis of these concepts, we then proposed the concept of the upper limit of density integral 
(ULDI), which was adopted to obtain signal features. Then, we introduced two types of serious 
fault cracks to the latch sheet of an automatic gun mechanism that is used on warships. Next, we 
applied the proposed method to extract the features of shock signals from data acquired when the 
automatic gun mechanism fired with normal and two fault patterns. Finally, we verified the 
effectiveness of our proposed method by applying the features that it extracted to a support vector 
machine (SVM). Our proposed method provided good results and was superior to the traditional 
statistics-based feature extraction method when applied to a SVM for classification. In addition, 
the former method demonstrated better generalisation than the latter. Thus, our method is an 
efficient approach for extracting shock signal features in pattern recognition and fault diagnosis. 
Keywords: signal processing, feature extraction, pattern recognition, fault diagnosis. 

1. Introduction 

Shock signal features must be extracted for utilisation in pattern recognition or fault diagnosis. 
Methods for the extraction of shock signal features can be classified into two major categories in 
accordance with the space wherein the signal exists. Methods in the first category involve the direct 
extraction of the features of an original signal in the time domain; commonly used methods in this 
category include mathematical statistics, information entropy [1-4]. Methods in the second category 
involve signal decomposition or transformation followed by feature extraction. Examples of 
commonly used signal decomposition methods in this category include various filter methods and 
empirical mode decomposition [5-8]. Commonly applied signal transformation methods include 
Fourier transform, wavelet transform [9, 10] and Hilbert transform. In fault diagnosis, we first use 
these methods to obtain the original signal features. Then, we use other methods, such as genetic 
algorithm [11-14], principal component analysis [15, 16] and kernel principal component analysis 
[17, 18] to perform necessary selections and transformations to obtain the appropriate features. 

Many scholars have improved the classical algorithms for signal feature extraction. Yang and 
Nataliani [19] presented a novel method for improving fuzzy clustering algorithms that can 
automatically compute individual feature weight and simultaneously reduce irrelevant feature 
components. They first considered the objective function of fuzzy c-means with feature-weighted 
entropy, constructed a learning schema for parameters and then reduced irrelevant feature 
components. Saif et al. [20] proposed the application of the nonlinear complete ensemble 
empirical mode decomposition method with adaptive white noise to decompose signals into 
intrinsic mode functions (IMFs). Deng et al. [21] revealed the inherent characteristics of vibration 
signals by calculating the fuzzy information entropy values of IMFs and considering them as 
feature vectors. They then proposed an improved particle swarm optimisation (PSO) algorithm by 
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using the diversity mutation, neighbourhood mutation, learning factor and inertia weight strategies 
for the basic PSO. Finally, they used the improved PSO algorithm to optimise the parameters of 
least squares support vector machines (LS-SVM) for the construction of an optimal LS-SVM 
classifier. Zhao et al. [22] proposed an enhanced empirical wavelet transform (MSCEWT) based 
on the maximum-minimum length curve method. The proposed MSCEWT can obtain fewer IMFs 
than empirical mode decomposition and ensemble empirical mode decomposition. 

Original features affect the accuracy of pattern recognition and fault diagnosis, and additional 
signal properties can be fully reflected by increasing the number of features. The features that can 
represent the main properties of signals with different properties may vary. Therefore, developing 
a new method for signal feature extraction is crucial. In this work, we proposed a method for 
extracting shock signal features. We first proposed the concept of the amplitude density of a signal. 
Then, we proposed the concept of the ULDI, which is adopted for signal feature extraction.  
Finally, we analysed the features of shock signals for an automatic gun mechanism to verify the 
effectiveness of our proposed method. 

2. Amplitude density and density integral 

2.1. Amplitude density for monotonic functions 

Assume that a signal 𝑓ሺ𝑡ሻ is defined in the interval ሾ𝑎, 𝑏ሿ and satisfies 𝑓′ሺ𝑡ሻ ≥ 0, 𝑡 ∈ ሾ𝑎, 𝑏ሿ 
where 𝐴 = minሼ𝑓ሺ𝑡ሻ|𝑡 ∈ ሾ𝑎, 𝑏ሿሽ , 𝐵 = maxሼ𝑓ሺ𝑡ሻ|𝑡 ∈ ሾ𝑎, 𝑏ሿሽ . The functional image of 𝑓ሺ𝑡ሻ  is 
presented in Fig. 1. 

 
Fig. 1. Functional image of 𝑓ሺ𝑡ሻ 

Then, Eq. (1) is established by considering points ሾ𝑡, 𝑦ሿ and ሺ𝑡 + Δ𝑡, 𝑦 + Δ𝑦ሻ in 𝑓ሺ𝑡ሻ: Δ𝑡 = 𝑓ିଵሺ𝑦 + Δ𝑦ሻ − 𝑓ିଵሺ𝑦ሻ. (1) 

We define a function 𝑟ሺ𝑦ሻ that satisfies Eq. (2): 

න 𝑟ሺ𝑥ሻ௬ା୼௬
௬ 𝑑𝑥 = Δ𝑡𝑏 − 𝑎. (2) 

Both ends of Eq. (2) are divided by Δ𝑦. The limit is taken as Eq. (3). Then, Eq. (3) becomes 
equal to Eq. (4): 

lim୼௬→଴ ׬ 𝑟ሺ𝑥ሻ𝑑𝑥௬ା୼௬௬ Δ𝑦 = lim୼௬→଴ Δ𝑡ሺ𝑏 − 𝑎ሻΔ𝑦, (3) 
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𝑟ሺ𝑦ሻ = 1𝑏 − 𝑎 ሺ𝑓ିଵሻᇱሺ𝑦ሻ. (4) 𝑟ሺ𝑦ሻ is defined as the amplitude density function of 𝑓ሺ𝑡ሻ in the interval ሾ𝑎, 𝑏ሿ. 𝑟ሺ𝑦ሻ reflects 
the probability of 𝑦 that 𝑓ሺ𝑡ሻ takes in the interval ሾ𝑎, 𝑏ሿ. 𝑟ሺ𝑦ሻ ≥ 0 exists, and Eq. (5) is true. The 
opposite number of the right end in Eq. (4) when 𝑓′ሺ𝑡ሻ ≤ 0 is taken. Eq. (6) is thus established: 

න 𝑟ሺ𝑦ሻ஻
஺ 𝑑𝑦 = 1, (5) 𝑟ሺ𝑦ሻ = 1𝑏 − 𝑎 |ሺ𝑓ିଵሻᇱሺ𝑦ሻ|. (6) 

2.2. Amplitude density for piecewise monotonic functions 

Assume that a signal 𝑓ሺ𝑡ሻ that is defined in the interval ሾ𝑎, 𝑏ሿ can be divided into𝑛amounts of 
monotonic intervals and the derived function 𝑓′ሺ𝑡ሻ, 𝑡 ∈ ሾ𝑎, 𝑏ሿ exists where: 𝐴 = minሼ𝑓ሺ𝑡ሻ|𝑡 ∈ ሾ𝑎, 𝑏ሿሽ,   𝐵 = maxሼ𝑓ሺ𝑡ሻ|𝑡 ∈ ሾ𝑎, 𝑏ሿሽ.  

The functional image of 𝑓ሺ𝑡ሻ  is illustrated in Fig. 2. The piecewise function in every 
monotonic interval is assumed to be expressed as 𝑓௜ሺ𝑡ሻ, 𝑖 = 1, 2, ..., 𝑛. 

 
Fig. 2. Function 𝑓ሺ𝑡ሻ that is defined in finite monotonic intervals 

Considering the amplitude density of 𝑓ሺ𝑡ሻ = 𝑦 , the piecewise function 𝑓௞ሺ𝑡ሻ , 𝑘 ∈ 𝐶  and  𝐶 ⊆ ሼ1,2, . . . , 𝑛ሽ is assumed to take the value𝑦. On the basis of our analysis in section 2.1, we 
show that the amplitude density 𝑟ሺ𝑦ሻ, where 𝑓ሺ𝑡ሻ = 𝑦, should be established as (7): 

𝑟ሺ𝑦ሻ = ෍ 1𝑏 − 𝑎௞∈஼ |ሺ𝑓௞ି ଵሻᇱሺ𝑦ሻ|. (7) 

The interval of the definition of the piecewise inverse function 𝑓௜ିଵሺ𝑦ሻ, 𝑖 = 1, 2, ..., 𝑛, is 
extended. The result of the extension is plotted in Fig. 3. For every extreme point or end point in 𝑓ሺ𝑡ሻ, the minimum points are extended to 𝑦 = 𝐴, and the maximum points are extended to 𝑦 = 𝐵 . The piecewise inverse function that has been extended is still expressed as 𝑓௜ିଵሺ𝑦ሻ , 𝑦 ∈ ሾ𝐴, 𝐵ሿ, 𝑖 = 1, 2, …, 𝑛 to facilitate expression in this paper. Therefore, Eq. (7) is equal to 
Eq. (8). We can still consider 𝑟ሺ𝑦ሻ as the amplitude density function of 𝑓ሺ𝑡ሻ: 

𝑟ሺ𝑦ሻ = 1𝑏 − 𝑎 ෍ |ሺ𝑓௜ିଵሻᇱሺ𝑦ሻ|௡௜ୀଵ . (8) 
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Fig. 3. Extended piecewise inverse functions 

2.3. ULDI 

Both ends of Eq. (8) are subjected twice to the definite integral operation in the interval ሾ𝐴, 𝑦ଶሿ 
and ሾ𝐴, 𝑦ሿ, 𝑦ଶ ∈ ሾ𝐴, 𝐵ሿ, of which the result is Eq. (9): 

න න 𝑟ሺ𝑦ଵሻ௬మ஺
௬

஺ 𝑑𝑦ଵ𝑑𝑦ଶ = න න ෍ 1𝑏 − 𝑎௡௜ୀଵ
௬మ஺

௬
஺ |ሺ𝑓௜ିଵሻᇱሺ𝑦ଵሻ|𝑑𝑦ଵ𝑑𝑦ଶ, (9) 

let: 

Φሺ𝑦ሻ = න න 𝑟ሺ𝑦ଵሻ௬మ஺
௬

஺ 𝑑𝑦ଵ𝑑𝑦ଶ,  

then, Eq. (9) is equal to Eq. (10): 

Φሺ𝑦ሻ = න න ෍ 1𝑏 − 𝑎௡௜ୀଵ
௬మ஺

௬
஺ |ሺ𝑓௜ିଵሻᇱሺ𝑦ଵሻ|𝑑𝑦ଵ𝑑𝑦ଶ      = 1𝑏 − 𝑎 න ෍ |𝑓௜ିଵሺ𝑦ଶሻ − 𝑓௜ିଵሺ𝐴ሻ|𝑑𝑦ଶ௡௜ୀଵ

௬
஺ = 1𝑏 − 𝑎 ෍ න |𝑓௜ିଵሺ𝑦ଶሻ − 𝑓௜ିଵሺ𝐴ሻ|𝑑𝑦ଶ௬

஺
௡௜ୀଵ . (10) 

We can ignore the influence of inverse functions without differential coefficients at the 
extreme points or end points of 𝑓ሺ𝑡ሻ when we calculate Eq. (10). Therefore, the value of 𝑓௜ିଵሺ𝑦ሻ, 𝑦 ∈ ሾ𝐴, 𝐵ሿ and 𝑖 = 1, 2, ..., 𝑛 at the local area of these points is readjusted to ensure that ሺ𝑓௜ିଵሻᇱሺ𝑦ሻ 
exists, whereas the value of Φሺ𝑦ሻ remains unchanged. We can handle this operation in this manner 
because the value of the integral is unchanged by standard integration and changing the integrand 
on a set of zero measure does not change the value of the integral (measure theory). 

The area of the shaded regions in Fig. 4 is regarded as 𝑆ሺ𝑦ሻ. Eq. (11) is true. Furthermore, we 
regard the curve in Fig. 5 as 𝑃௬ሺ𝑡ሻ, which is formed by 𝑓ሺ𝑡ሻ and the constant𝑦: 

𝑆ሺ𝑦ሻ = ෍ න |𝑓௜ିଵሺ𝑥ሻ − 𝑓௜ିଵሺ𝐴ሻ|௬
஺

௡௜ୀଵ 𝑑𝑥. (11) 

𝑃௬ሺ𝑡ሻ is easily obtained when𝑦is determined. On the other hand, 𝑆ሺ𝑦ሻ can be expressed as 
Eq. (12): 

𝑆ሺ𝑦ሻ = ሺ𝑏 − 𝑎ሻሺ𝑦 − 𝐴ሻ − න ൣ𝑃௬ሺ𝑡ሻ − 𝐴൧௕
௔ 𝑑𝑡. (12) 
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We can obtain Eq. (13) by combining Eqs. (10), (11) and (12). Then, Eqs. (14) and (15) are 
true: 

Φሺ𝑦ሻ = 𝑦 − 1𝑏 − 𝑎 න 𝑃௬ሺ𝑡ሻ𝑑𝑡௕
௔ , (13) Φᇱሺ௬ሻ = 1 − 𝑑ሺ𝑏 − 𝑎ሻ𝑑𝑦 න 𝑃௬ሺ𝑡ሻ𝑑𝑡௕

௔ , (14) 𝑟ሺ𝑦ሻ = 𝑑ଶሺ𝑎 − 𝑏ሻ𝑑𝑦ଶ න 𝑃௬ሺ𝑡ሻ𝑑𝑡௕
௔ . (15) 

Φሺ𝑦ሻ, Φ′ሺ𝑦ሻand 𝑟ሺ𝑦ሻ are uniquely determined by each other when 𝑓ሺ𝑡ሻ is determined. We 
designate Φ′ሺ𝑦ሻ  as the ULDI of a signal. The data obtained in engineering applications are 
discrete. The error of the first-order differential operation is low in the calculation of the 
differential operation of Eq. (14). When solving the second-order differential operation in Eq. (15), 
the local of the first-order differential section steps into a jump. The second-order differential is 
therefore not consistent with the actual value if the differential region is small. On the other hand, 
if the differential region is large, the accuracy of the calculation will decrease. Signal features will 
be extracted by utilising Eq. (14) to avoid this problem. 

 
Fig. 4. Area 𝑆ሺ𝑦ሻ of the shaded regions 

 
Fig. 5. Curve of 𝑃௬ሺ𝑡ሻ 

3. Features of shock signals 

As discussed in this section, we introduced two types of serious fault cracks to the latch sheet 
of an automatic gun mechanism that is used on warships. Then, we applied the proposed method 
to extract the features of shock signals from data acquired when the automatic gun mechanism 
fired with normal and two fault patterns. The firing frequency of the automatic gun mechanism is 
10 Hz. The main parameters of the sensors that we used in this work are shown in Table 1.  

Table 1. Sensor parameters 
Performance Value 
Sensitivity 1.0 mV/g (±15%) 

Measurement range ± 5,000 g pk 
Frequency range 0.4 Hz to 7,500 Hz (±10 %) 

Electrical filter cutoff frequency ≥7.5 kHz (−10 %) 
Resonant frequency ≥50 kHz 

Broadband resolution 0.02 g rms (1kHz to 10 kHz) 

We set the sampling frequency as the maximum sampling frequency (204.8 kHz) of the signal 
collector to obtain additional details in the time domain and the sampling time as 5 s. The 
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environmental parameters of the experiment are shown in Fig. 6. The main measuring point and 
the two types of serious fault cracks are illustrated in Fig. 7. 

 
a) The position prone to noise 

 
b) The place for experiment 

 
c) Signal collector 

Fig. 6. Environment of the experiment 

 
a) The main measuring point 

 
b) The first kind of cracks 

 
c) The second kind of cracks 

Fig. 7. Main measuring point and two types of serious fault cracks 

3.1. ULDI of shock signals 

Only the actual effective time period of the original signal is intercepted for analysis to avoid 
the interference of invalid signals with effective signals. The shock signals in the time domain are 
plotted in Fig. 8. The ULDIs of each signal are shown in Fig. 9. The area [–1000, 0]×[0, 0.3] of 
Fig. 9 is presented in Fig. 10 to properly illustrate the ULDI of each signal. From Fig. 10, we can 
conclude that under the same density integral, the amplitudes that correspond to different working 
modes are different. 

 
a) 

 
b) 

 
c) 

Fig. 8. Signals in the time domain 

3.2. Signal features 

For a continuous shock signal 𝑓ሺ𝑡ሻ, the ULDI Φ′ሺ𝑦ሻ is a strictly monotonically increasing 
function of 𝑦. Therefore, for a determined value of Φ′ሺ𝑦ሻ, we can obtain the amplitude 𝑦 that 
corresponds to Φ′ሺ𝑦ሻ through bisection, which is a method that is commonly used to identify zero 
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points. The amplitude𝑦that corresponds to a determined value of ൫Φ௜,௝௠ ൯ᇱሺ𝑦ሻ can be denoted as 𝑦௜,௝௠ , 𝑚 ∈ ሼ1,2,3ሽ, 𝑖 ∈ ሼ1,2,3. . . ሽ, 𝑗 ∈ ሼ1,2,3. . . ሽ, where 𝑚  means the index of signals generated by 
different patterns, 𝑖 means the index of signals generated by same pattern and 𝑗 means the index 
of amplitudes that correspond a signal. 

 
Fig. 9. Density integrals of signals 

 
Fig. 10. Area [–1000,0]×[0,0.3] of Fig. 9 

Three signals that correspond to the different firing pattern with respect to the different values 
of Φ′ሺ𝑦ሻ are shown in Table 2, which means 𝑚 ∈ ሼ1,2,3ሽ, 𝑖 ∈ ሼ1ሽ, 𝑗 ∈ ሼ1,2, . . . ,8ሽ and Φ′ሺ𝑦ሻ ∈ሼ0.1,0.2, . . . ,0.8ሽ. Therefore, we can consider 𝐹௜௠ = ൫𝑦௜,ଵ௠ , 𝑦௜,ଶ௠ , . . . , 𝑦௜,ே௠ ൯், 𝑁 = 8, as the feature of 
a signal. From Table 2, we can infer that the difference between the different work patterns first 
decreases and then increases as the density integral increases. This behaviour reflects the 
similarities and differences between each firing pattern. 

Table 2. Signal features 
Density integral 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Amplitude 
(m/s2) 

Normal −478.13 −138.11 −62.67 −23.41 1.24 24.53 64.67 151.75 
Fault I −579.77 −149.66 −65.09 −25.29 −0.02 25.03 70.32 161.02 
Fault II −704.80 −185.57 −65.76 −17.61 1.37 24.90 77.01 180.88 

3.3. Applying extracted features to a SVM 

We further verified the effect of our proposed method and selected the data from one sensor 
for verification (there are 8 sensors in the actual test of sampling signals). We sampled 14 effective 
groups of data that correspond to each work pattern for application into an SVM, and limited by 
the service life of the automatic gun mechanism. Only small samples can be sampled. The steps 
of feature extraction and verification are as follows. 

Step 1: on the base of original signals, intercept the signal segment when the latch sheet is 
working. 

Step 2: the instantaneous frequency function of IMF2 is obtained by EMD decomposition of 
the signal that is intercepted. 

Step 3: on the base of instantaneous frequency function of IMF2, we extracted the features that 
are similar to the features presented in Section 3.2. 

Above what we analysed, there are 42 samples (features) for classification. At the process of 
training and testing SVM, we chose to leave one out cross validation. The results of the training 
are presented in Table 3, and the results of testing are provided in Table 4 [23-25]. 

The dimensionality of the features 𝐹௜௠ = ൫𝑦௜,ଵ௠ , 𝑦௜,ଶ௠ , . . . , 𝑦௜,ே௠ ൯்  used for the SVM is 11, and Φ′ሺ𝑦ሻ ∈ ሼ0.1,0.15,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.85,0.9ሽ,  𝑖 ∈ ሼ1,2, . . . ,42ሽ,  𝑗 ∈ ሼ1,2, . . . ,11ሽ,  𝑁 = 11. We selected the radial basis function (RBF) as the kernel of the SVM. The kernel is 
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expressed as: 

𝐾ሺ𝑥, 𝑦ሻ = exp ቆ− ‖𝑥 − 𝑦‖ଶ2𝜎ଶ ቇ.  

𝜎 > 0, of which 𝜎 is the width and was selected as 5. 
We validated the effectiveness of the proposed method by comparing its performance with that 

of a statistics-based method. We selected the same sample data and SVM parameters for 
classification. In general, we can represent the instantaneous frequency data that correspond to a 
shock signal as ሼ𝑥ଵ, 𝑥ଶ, . . . , 𝑥ேሽ. Table 5 shows the representation of each component of the feature 
extracted from signals on the basis of mathematical statistics. We can regard this feature as ൫𝑥̅, 𝑥௣, 𝑥௥௠௦, 𝑥௥, 𝐾, 𝐶, 𝐼, 𝑆൯். The dimensionality of the features is 8. Training results are shown in 
Table 6, and testing results are shown in Table 7. 

From Tables 3 and 4, we can infer that the SVM conflates features that correspond to normal 
patterns with those that correspond to fault I patterns. Although the classification results are 
acceptable, accuracy must be improved by combining other types of features. As inferred from 
Tables 4 and 7, the classification performance of the proposed method is superior to that of the 
traditional method that constructs features on the basis of mathematical statistics. Tables 3, 4, 6 
and 7 show that the generalisation of the former method is better than that of the latter method.  

Table 3. Results of SVM training 
Training Normal Fault I Fault II 
Normal 13 0 0 
Fault I 1 14 1 
Fault II 0 0 13 

Accuracy (%) 92.85 100 92.85 
 

Table 4. Results of SVM testing 
Test Normal Fault I Fault II 

Normal 12 1 0 
Fault I 2 12 1 
Fault II 0 1 13 

Accuracy (%) 85.71 85.71 92.85 
 

Table 5. Feature representation 
Feature components Representation Feature components Representation 

Absolute mean 𝑥̅ = 1𝑁 ෍ |𝑥௜|ே௜ୀଵ  Wave form 𝐾 = 𝑥௥௠௦𝑥̅  

Peak value 𝑥௣ = 𝑚𝑎𝑥|𝑥௜| Peak index 𝐶 = 𝑥௣𝑥௥௠௦ 

Mean square 𝑥௥௠௦ = ඨ1𝑁 ෍ 𝑥௜ଶே௜ୀଵ  Impulse index 𝐼 = 𝑥௣𝑥̅  

Root square 𝑥௥ = ቌ1𝑁 ඨ෍ |𝑥௜|ே௜ୀଵ ቍଶ
 Skewness 𝑆 = 𝐸 ൥ቆ𝑥 − 𝐸ሺ𝑥ሻඥ𝐷ሺ𝑥ሻ ቇଷ൩ 

Table 6. Training results for the features constructed on the basis of mathematical statistics 
Training Normal Fault I Fault II 
Normal 12 0 0 
Fault I 2 13 1 
Fault II 0 1 13 

Accuracy (%) 85.71 92.85 92.85 

Table 7. Testing results for features constructed on the basis of mathematical statistics 
Test Normal Fault I Fault II 

Normal 12 1 1 
Fault I 2 11 0 
Fault II 0 2 13 

Accuracy (%) 85.71 78.57 92.85 
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4. Conclusions 

We proposed a method for extracting shock signal features. The proposed method has low 
computational cost. Given this characteristic, our proposed method can be used as a simple and 
efficient tool for the extraction of shock signal features for pattern recognition or fault diagnosis. 
Using the features extracted by our proposed method in pattern recognition yielded good results. 
Nevertheless, other types of features must be combined to improve identification accuracy. 

The shock signals used in this work are deterministic signals, which are repeatable. Thus, the 
proposed method can reliably and robustly differentiate different signal types. However, this 
method is not necessarily applicable to signals that are corrupted and is sensitive to the time 
domain partition. Signals in the time domain must be first partitioned prior to the application of 
the proposed method to avoid these problems. 
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