Dynamic analysis of impact on test platform
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Abstract. In this paper, the finite element model of impact test platform is established and
analyzed by explicit central difference method. The relationship among different output energy
has been obtained, which evaluated the validity of the finite element model and the simulation
results. The total energy of the system is relatively constant. Meanwhile, there are two mutations
in the kinetic energy, which is basically consistent with the experimental results. The energy
change, stress and strain of the test platform during impact are analyzed. Ensure the strength of
test platform meets the requirement.

Keywords: dynamic analysis, finite element model, explicit central difference, stress and strain,
impact.

1. Introduction

At present, there are many different methods to solve the dynamic problem of structure, among
which the most used are direct integral method and modal superposition method. Since this paper
adopts the direct integral equation, the modal superposition method is not introduced in detail.
The direct integration method can be divided into two categories: implicit integration method and
explicit integration method. The implicit integration method needs to directly solve the stiffness
matrix of the structure subjected to the impact load. Implicit integration has methods of
Newmark-£ [1] and Wilson-6 [2]. The explicit integral method adopts the method of central
difference, Uses the result of the previous incremental step to solve the next incremental step, and
adopts the recursive method. For most of the structural impact dynamics problems, explicit
integrals are generally used to solve them [3].

For the dynamic response analysis of a system, if the system is a system with damping, the
intermediate variables need to be added, which will increase the overall calculation [4]. Implicit
algorithm can also be transformed into explicit algorithm by using displacement as the variable of
the first solution [5]. For explicit algorithms, Taylor expansion or weighted residual is usually
used.

2. Finite element modeling of the test platform

The wave velocities of materials are calculated by using the properties of materials [6]. The
equation is:

E
C = Y] (1)
SN

where E is Young modulus of material and p is the density of material.
In this paper, the dynamic response during the impact load process is mainly studied. The
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stress propagates along the direction of the load surface with time. In order to have a fine mesh
density to capture the stress wave, the solid element is adopted for the test platform along the
impact load direction and the design calculation is carried out. The designed test platform adopts
steel structure. p = 7800 kg/m3, E = 2.1x10'" MPa. Therefore, the wave velocity of impact
platform material is:

2.1 x 10'* MPa

— 3
7800 kg/m? 5.19 x 10° m/s. )
Because the impact time of the hammer system is 0.2 s. It is appropriate to make the impact
load occur within the span of 120 units. The height of the test platform is 1197 mm, and the
minimum grid size is estimated to be 9.975mm by calculation. Therefore, the minimum grid size
is set to be 10 mm to divide the test platform. The test platform is divided into grids by the
combination of manual section method and automatic subdivision method. The results of cell grid
generation are shown in Fig. 1.
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Fig. 1. The finite element model of the test platform

This model adopts metal materials. Detailed engineering materials of the test platform are
shown in Table 1.

Table 1. Detailed performance parameters of all parts and components

Name Material Poisson’s Ultimate strength Allowable stress
ratio (MPa) (MPa)

Chamber analog Alloy steel 0.3 980 557

Impact platform Alloy steel 0.3 980 557

Connecting Carbon structural 027 390 160
element steel

Frame Joist steel 0.29 885 490

Support Carbon structural 027 390 160
subsystem steel

Leg structure Carb"‘; titerl“cmral 0.27 390 160

3. Impact dynamics analysis of the test platform
The inherent period of the test platform is 0.036 s and the impact load duration is 0.2 s. By

comparison, it can be found that the inherent period of the test platform is less than the duration
of the impact load. Therefore, the impact studied in this paper is a complex impact category [7].
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3.1. Load and boundary conditions

In the simulation of semi-rigid launch operation on the cold launch test platform, the impact
load is provided by the hammer system on the vertical gantry, and the maximum impact load
provided by the hammer system is shown in Fig. 2.
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Fig. 2. The impact load of the hammer system

In the process of heavy hammer strike, the main force surface is the upper end surface of the
simulant at the bottom of the initial volume chamber. A correlation point is set on the upper end
surface of the simulator at the bottom of the initial volume chamber. Coupling constraints are
established between the rigid node and the grid node at the upper end surface of the simulator at
the bottom of the initial volume chamber. An associated point is set on the lower end surface of
the hydraulic cylinder support structure, coupled with the mesh node on the lower end surface of
the hydraulic cylinder, and the location of the associated point is completely fixed. In order to save
calculation cost, 1.5s is taken in the analysis process.

3.2. Energy balance analysis

Energy balance analysis is an important part of explicit nonlinear dynamic analysis. By
analyzing the relationship between the output energy, the validity of the finite element model and
the simulation results can be judged and evaluated [8]. The energy balance equation of the whole
model is as follows:

Ey + Ey + Epp + Exg — Ew = Etotan 3)

where E| is the internal energy; Ey, is the viscous loss energy; Erp is the friction loss energy; Exg
is the kinetic energy; Ey, is the work done by the external loading; E;,:q; is the sum of these
energy components.

Through theoretical calculation and analysis, E;,;,; remains constant. There are errors in finite
element calculations, E;,,; is not a constant value but is generally less than 1 %. E; is mainly
composed of energy loss Ep in the inelastic process, pseudo-strain energy E,, recoverable elastic
strain energy Ej and energy loss E¢p in the viscoelastic process [9]. Among them, pseudo-strain
energy E, is the energy in transverse shear and the energy stored in hourglass resistance. In the
simulation analysis, the proportion of pseudo-strain energy in the internal energy is generally no
more than 5 %~10 % [10]. If the calculation results are beyond the scope, then the calculation
results are unreliable and need to be re-calculated. During the impact process, the total energy,
kinetic energy, internal energy and pseudo-strain energy of the system are shown in Fig. 3.

The total energy of the system remains at a constant value, and there is a sudden change in the
kinetic energy of the test platform at about 0.001 s and 0.2 s, which is basically consistent with
the fact. At 0.01 s, the hammer head of the heavy hammer system starts to contact the bottom of
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the initial capacity chamber on the platform. At 0.2 s, the hammer head of the heavy hammer
system leaves the bottom of the initial capacity chamber. The ratio of pseudo-strain energy to
internal energy was 7.89 %, which was between 5 % and 10 %, meeting the requirements.
Through the analysis of energy output, the correctness of the finite element model of the test
platform is verified.

E/KJ
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t/s
Fig. 3. Impact energy variation diagram

3.3. Transient response analysis

The time of impact loading is 0.2 s. The stress cloud diagram of the test platform extracted
during the impact loading period is shown in Fig. 4.

According to the stress cloud diagram, the stress of the test platform is mainly concentrated in
the contact part which between the support structure and the Leg structure. The stress-time curve
of the contact part (node 178375, 179438, 180487, 181550), as shown in Fig. 5.
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e)0.3s

)0.4s

Fig. 4. The stress nephogram of test platform

Through the stress-time curve analysis of the contact nodes between the Leg structure and the
support structure of the frame, the stress of the four support structures was consistent, reaching
the maximum value of 68.5 at 0.04 s, meeting the yield strength of 160 under the safety factor of
1.5. The maximum strain was 0.000263, which was basically consistent with the stress distribution
area. Within 0.2 s of the impact period, the stress oscillations changed, but the amplitude did not
change very much. With the hammer system hitting, the stress gradually decreased and finally
approached 0. The load area is mainly on the inner surface of the support structure close to the
frame, which is caused by the large impact platform and the large span of the four support

structures.
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Fig. 5. Stress — time curve of the contact point

4. Conclusions

By comparing the impact loading time of the hammer system, it is determined that the impact
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loading response is the category of complex impact. Using explicit dynamic calculation method,
analyzes the changes of energy, the stress and strain in the process of impact. Through the analysis
of the results, the design strength meet the requirements of experimental platform, the research
content of this chapter for impact test of test platform has important guiding significance, and laid
a solid foundation for the structural optimization.
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