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Abstract. Present work establishes a new formulation to determine the dynamic characteristics of 
a cracked beam, where the change in second moment of area is considered. The present 
formulation considers the shift in the neutral axis of the cracked beam-element, which has been 
ignored previously. Consequently, an in-depth analysis is conducted to understand the 
effectiveness of this new approach. The results obtained shows a promising scope for the adoption 
of the updated formulation for various cross-sections and future research work. 
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1. Introduction 

The field of dynamic analysis has been of great interest for two decades among researchers. 
The study and interpretation of dynamics for simple structures provides the necessary knowledge 
to understand the behaviour of these structures, especially when they encounter discontinuities 
such as a crack. The primary step in any dynamic analysis of a structure is to establish a finite 
element model. However, the most challenging step in any finite element formulation is to obtain 
the best approximation of the physical model. The current work includes an update to the 
formulation of a cracked beam that gives a more accurate solution, which can be referred to as a 
benchmark for other simple or built-up structures. 

Khaji et al. [1] presented an analytical approach for crack identification procedure in uniform 
cracked beams based on bending vibration measurements. The proposed analytical method 
considering Timoshenko beam theory is validated with the numerically obtained by the 
finite-element method. Mia et al. [2] studied the modal parameters for both cracked and uncracked 
cantilever beam using abacus software for different depth, position and opening of the crack. 
Conclusions on the failure criteria with different mode of vibrations are made. Yuen [3] observed 
a particular trend in the changes of Eigen value and Eigen vector with respect to the location and 
depth of crack. A finite element model of a uniform cross sectioned cantilever beam was chosen 
to provide data for analysis. Khnaijar and Benamar [4] presented a new discrete physical model 
to approach the problem of cracked beam vibrations. Parametric study facilitating the diagnostics 
process involving both crack localization and depth estimation are made. 

The previous literatures ignore the shift in the neutral axis of the cracked beam-element with 
respect to neutral axis of the beam. Hence, the results so obtained are deemed to be mere 
approximations. In the present work, a new finite element formulation is established for the first 
time. The new formulation incorporates parallel axis theorem to determine the dynamic 
characteristics of the beam, effectively. This formulation is established and detailed in Section 2. 
In order to validate this new approach, an example of a cracked beam with rectangular 
cross-section is considered and its dynamic characteristics are studied and reported in Section 3. 
Further, Section 4 explains broader observations inferred from the conducted parametric study. 
Thus, the present work sheds light on the improvement observed and it is evident that the results 
obtained must be adopted for further research.  
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FORMULATION OF EFFECTIVE STIFFNESS FOR PREDICTING NATURAL FREQUENCY OF CRACKED BEAMS.  
C. V. CHANDRASHEKARA, PAVAN SUSWARAM, DHARANI J., HIMANSHU AGARWAL, RAJ ARJUN S. I. 

136 VIBROENGINEERING PROCEDIA. SEPTEMBER 2018, VOLUME 19  

2. Mathematical model and formulation 

For the purpose of projected parametric study, a simple fixed-fixed beam of rectangular 
cross-section is considered as shown in Fig. 1. The beam is discretized into number of equal 
elements. Two degrees-of-freedom at each node point of every element is considered, viz., 
transverse 𝑣 and rotation, with the slope of the elastic curve, 𝜃 = 𝑑𝑣 𝑑𝑥⁄  at each node. 

 
Fig. 1. Fixed-fixed beam with crack 

Equation of motion of a beam for free-vibration in matrix form is given by [7]: ൣሾ𝐾ሿ − ሾ𝑀ሿ𝜔ଶ൧ሼ𝑋௜ሽ = 0. (1)

For non-trivial solutions the determinant of the co-efficient of 𝑋௜ must be zero: |ሾ𝐾ሿ − ሾ𝑀ሿ𝜔ଶ| = 0. (2)

Stiffness and mass matrices of each discretized element for two degrees-of-freedom are 
represented as follows: 

ሾ𝑘௘ሿ = 𝐸𝐼𝑙௘ଷ ⎣⎢⎢
⎡ 12 6𝑙௘6𝑙௘ 4𝑙௘ଶ −12 6𝑙௘−6𝑙௘ 2𝑙௘ଶ−12 −6𝑙௘6𝑙௘ 2𝑙௘ଶ 12 −6𝑙௘−6𝑙௘ 4𝑙௘ଶ ⎦⎥⎥

⎤, (3)

ሾ𝑚௘ሿ = 𝑚𝑙௘420 ⎣⎢⎢
⎡ 156 22𝑙௘22𝑙௘ 4𝑙௘ଶ 54 −13𝑙௘13𝑙௘ −3𝑙௘ଶ54 13𝑙௘−13𝑙௘ −3𝑙௘ଶ 156 −22𝑙௘−22𝑙௘ 4𝑙௘ଶ ⎦⎥⎥

⎤. (4)

For the un-cracked beam-element, 𝐼 is given by: 

𝐼 = 𝑏𝑡ଷ12 . (5)

For a cracked beam-element, in most of the reported literature, one can find that the stiffness 
(𝑘௘) is modified in order to predict the natural frequencies. One such modification is considering 
the second-moment of area of cross-section of the portion below the crack. At the same time, 
mass-loss due to crack is assumed to be zero, as it is very small when compared to the entire mass 
of the beam. The modified second moment of area for cracked beam-element (say, 𝐼௖ ) is 
represented as: 𝐼௖ = 𝐼(1 − 𝜏௜)ଷ, (6)

where, 𝜏௜ is ratio of crack-depth to thickness for 𝑖th element. 
However, this formulation failed to consider the shift in the neutral axis of the cracked 

beam-element with respect to the neutral axis of the beam. This leads to a significant variation in 
predicting the natural frequencies at different modes. This issue is addressed and reported in the 
present work. The present work highlights the variation in the natural frequency prediction using 
the new approach. 
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To account for the shift in the neutral axis, an effective second moment of area (𝐼௖ି௘) is derived 
using parallel axis theorem as follows: 

𝐼௖ି௘ = 𝑏𝑡12ଷ ሾ(1 − 𝜏௜)ଷ + 3(𝜏௜ଶ − 𝜏௜ଷ)ሿ. (7)

3. Comparison of 𝑰𝒄 and 𝑰𝒄ି𝒆 formulations for second moment of area 

In order to conduct a parametric study of cracked beams, an Aluminium beam of rectangular 
cross-section is considered. Fixed-Fixed boundary condition is applied. A crack on the beam is 
taken into consideration at various positions and with varying depth as well. The beam geometry 
and its material properties are shown in Table 1. 

A MatLab code is developed that incorporates both 𝐼௖ and 𝐼௖ି௘ formulations separately. The 
position of the crack on the beam (𝑥௖) is varied along the length and the natural frequencies of up 
to three modes are generated. The natural frequencies are further plotted against the position of 
crack with respect to the length of the beam (𝑥௖ 𝐿⁄ ).  

Table 1. Beam material (Aluminium 6082) property and geometry 
Parameters Notation Value 

Breadth 𝑏 30 mm 
Thickness 𝑡 10 mm 

Length 𝐿 500 mm 
Young’s modulus 𝐸 71 GPa 

Density 𝜌 2,710 kg/m3 

3.1. First natural frequency plots 

The first natural frequency for different crack positions with a crack depth to thickness ratio 
(𝜏) of 0.2 is plotted below in Fig. 2.  

 
Fig. 2. First natural frequency with respect to varying crack position (𝜏 = 0.2) 

Further, the similar graph is plotted for first mode with a crack depth to thickness ratio (𝜏) of 
0.5. The graph is shown as follows in Fig. 3. 

From the above graphs, it is observed that the natural frequencies generated when 𝐼௖ is used 
shows significant variations with respect to the crack position. Such a trend is highly unlikely to 
be observed in a practical situation. Whereas when 𝐼௖ି௘  formulation is used, the natural 
frequencies show nominal variations, which is a realistic scenario in practical situations.  

However, it is also observed that the natural frequencies obtained from both methods meet at 
particular points of crack position. This non-linear variation of deviation in natural frequency is 
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actually dependent on the mode shape. This is explained in detail in Section 4. 

 
Fig. 3. First natural frequency with respect to varying crack position (𝜏 = 0.5) 

3.2. Second natural frequency plots 

As shown above in Section 3.1, the same trend follows in the case of the second natural 
frequencies. Similarly, the graphs are plotted for natural frequencies against the crack positions. 
Initially, crack depth to thickness ratio (𝜏) of 0.2 is considered. The graph for this case is shown 
below in Fig. 4.  

 
Fig. 4. Second natural frequency with respect to varying crack position (𝜏 = 0.2) 

 
Fig. 5. Second natural frequency with respect to varying crack position (𝜏 = 0.5) 
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As indicated earlier, the above graph shows the same behaviour. The natural frequencies 
obtained from the 𝐼௖  formulation shows much more variations when compared to the 𝐼௖ି௘ 
formulation. Similarly, when a crack depth to thickness ratio (𝜏) of 0.5 is considered, the same 
behaviour continues. The graph is shown below in Fig. 5. 

Hence, it is evident that the incorporation of 𝐼௖ି௘ to calculate the second moment of area of a 
cracked beam is the correct method. The previously adopted 𝐼௖ formulation is incorrect and is just 
a mere approximation of the second moment of area of a cracked beam. Thus, the updated 
formulation must be adopted in further calculations. 

4. Mode based deviation in natural frequency 

In Section 2, a new formulation to calculate the second moment of area of a cracked beam is 
established. The formulation is proved to be better at predicting the results with the help of graphs. 
It is observed from these graphs that the natural frequencies meet at a point, for a particular crack 
position. Away from these points, the natural frequencies deviate from each other. Such non-linear 
variation behaviour is actually dependent on the mode shape. The first mode shape of a fixed-fixed 
beam is shown in Fig. 6. 

For the first mode shape of the beam, it is observed that the slope of the beam with respect to 
its equilibrium position is the least at exactly three regions i.e., the two boundaries and the region 
of maximum deflection (𝑥௖ 𝐿⁄ = 0.5). Further, as we move away from the boundary regions 
towards the centre of the beam, the slope changes. It is observed from Fig. 6 that the slope is 
maximum at exactly two regions. Thus, it can interpreted that the natural frequency is lesser at the 
regions where slope of the beam is least. Whereas, the natural frequency is comparatively higher 
at the regions where slope of the beam is maximum. This trend follows for both 𝐼௖  and 𝐼௖ି௘ 
formulations. Analogues to this the same behaviour is seen with the second mode. 

 
Fig. 6. First mode shape comparison with natural frequency plot 

5. Conclusions 

In the field of structural dynamics, modelling the discontinuities such as cracks must 
incorporate the change in stiffness. Previously reported literatures failed to consider the modified 
second moment of area which is caused by the shift in the neutral axis of the cracked beam-element 
with respect to the neutral axis of the beam. This challenge is overcome by establishing a new 
finite element formulation which considers parallel axis theorem to accommodate the shift in 
neutral axis. This new approach to effectively model discontinuous structures is exemplified by 
considering a fixed-fixed cracked beam with rectangular cross-section. The results are reported, 
and the new formulation is proved to be more effective than the previously adopted methods. 
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