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Abstract. Structural analysis is mainly concerned with predicting the behaviour of a structure 
when subjected to any external excitation. Dynamic analysis of simple structures can be carried 
out using finite element analysis on various computing platforms such as MatLab. In the case of 
industrial applications, dynamic analysis is mainly carried out using simulations on softwares such 
as Ansys. The present paper compares mathematical and simulation analysis of cracked beam and 
the dynamic behaviour with respect to mode shape and crack position is reported. 
Keywords: crack beam, structural dynamics, simulation, mode shape and FEA. 

1. Introduction 

Structural design is one of the subjects in which researchers have shown profound interest over 
the past five decades. Dynamic analysis of structures is one among many topics in structural design. 
Simple beams such as cantilever and fixed-fixed beams form a basic beam structure. Establishing 
the dynamic characteristics of these simple structures enables the design process to be faster and 
more accurate. The most challenging step in any structural analysis is the construction of a 
mathematical model of the structure. This mathematical model consists of differential equations 
whose solutions describe the changes in the system, which can be expressed as a mathematical 
analytic function. This numerical technique is called as Finite Element Analysis (FEA). Finite 
element method helps the designer in reducing the number of prototypes used for experimentation 
and optimize the overall design process. Over the past few years, there has been a rise in emphasis 
towards performance and reliability of structures. This has led to the need for substantial 
enhancement in methods of dynamic analysis of structures. One such method is the use of 
simulation software’s. Simulation software in structural analysis is a set of algorithms that allows 
the designer to build a model of the structure, apply the various excitation conditions and simulate 
structural behaviour. It has been proved that the method of simulation of structures is faster, 
efficient and enables the designer to better understand the behaviours. 

In the past decades, many researchers have extensively worked on the structural dynamics in 
finding natural frequencies and mode shapes for various beams with various boundary conditions. 
This has shown further interest towards beams with small discontinuities such as cracks. 

Qian [1] established a finite element model of cracked beam and proposed a simple method 
for crack detection with respect to eigen couple. Deokar [2] performed experimental modal 
analysis (EMA) on uncracked and cracked beams and predicted crack parameters using natural 
frequencies. Bagal [3] carried out FEA using Ansys and experimental testing to study the depth 
of crack in cracked beams. Mazaheri [4] demonstrated the dynamic analysis of cracked concrete 
beams using experimental testing and FEA. Liu [5] analysed the modal parameters of cracked 
cantilever beams using perturbation methods and compared the computation results with 
experimental results. 

Dynamic analysis approximations of cracked beam can be carried out using both analytical as 
well as simulation methods. Natural frequencies obtained by both methods will show a certain 
amount of deviation from each other for a given mode for various reasons. 

The present paper demonstrates the trend in the natural frequency deviation between two 
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methods, for a particular mode, with respect to position of the crack. In Section 2, the beam 
geometry and material properties are established, and the mathematical model used for Finite 
Element Analysis is constructed. Dynamic computation of analytical model is carried out in 
MatLab and various mode shapes are demonstrated. Section 3 explains the simulation process 
adopted with respect to various parameters in Ansys (Version 18.2). In Section 4, results obtained 
by both analytical and simulation methods are tabulated and significant observations in the 
deviation of natural frequency for cracked beam are made. The deduced trends can be used as a 
benchmark for further study of cracked beam dynamics using analytical and simulation 
approaches. It also widens scope for improved methods of analytical modelling and simulation of 
structures. 

2. Analytical model 

This section demonstrates the analytical model used for finite element analysis of an 
Aluminium (Grade 6082) cracked beam. In order to perform dynamic analysis, two boundary 
conditions are considered, namely fixed-fixed and cantilever beams. The material properties and 
dimensional parameters of the cracked beam considered are tabulated in Table 1. The formulation 
of the mathematical model i.e., FEA is carried out using Matlab. 

Table 1. Beam material property and geometry 
Parameters Notation Value 

Breadth 𝑏 30 mm 
Thickness 𝑡 6 mm 

Crack width 𝑐௪  0.4 mm 
Crack depth 𝑎 3 mm 

Young’s modulus 𝐸 71 GPa 
Density 𝜌 2710 kg/m3 

Poisson’s ratio 𝜈 0.3 

2.1. Beam geometry 

A rectangular cross-section beam of length 𝐿, breadth 𝑏 and thickness 𝑡 are considered. The 
beam consists a crack of depth 𝑎, located at a distance of 𝑥௖ from its fixed end, as shown in Fig. 1. 

 
Fig. 1. Cantilever beam with crack 

A MatLab script is developed to generate mode shapes of a fixed-fixed beam and cantilever 
beam as a reference as shown in Fig. 2 and Fig. 3 respectively. 

2.2. Formulation 

The beam is discretized into 𝑛 number of finite beam-elements. One-dimensional un-cracked 
beam-element with two nodes and two degrees-of-freedom per node is shown in Fig. 4. The 
degrees of freedom are: vertical deflection 𝑣 and rotation, with the slope of the elastic curve,  𝜃 = 𝑑𝑣/𝑑𝑥 at each node. 

Equation of motion of a beam for free vibration in matrix form is given by: ൣሾ𝐾ሿ − ሾ𝑀ሿ𝜔ଶ൧ሼ𝑋௜ሽ = 0. (1) 
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In the Fig. 4, 𝐹ଵ, 𝐹ଶ are the shear forces and 𝑀ଵ, 𝑀ଶ are the bending moments at Node 1 and 
Node 2.  

The stiffness matrix of the beam element is given by: 

ሾ𝑘௘ሿ = 𝐸𝐼𝑙௘ଷ ⎣⎢⎢⎢
⎡ 12 6𝑙௘6𝑙௘ 4𝑙௘ଶ −12 6𝑙௘−6𝑙௘ 2𝑙௘ଶ−12 −6𝑙௘6𝑙௘ 2𝑙௘ଶ 12 −6𝑙௘−6𝑙௘ 4𝑙௘ଶ ⎦⎥⎥⎥

⎤. (2) 

The mass matrix of the beam element is given by: 

ሾ𝑚௘ሿ = 𝜌𝐴𝑙௘420 ⎣⎢⎢⎢
⎡ 156 22𝑙௘22𝑙௘ 4𝑙௘ଶ 54 −13𝑙௘13𝑙௘ −3𝑙௘ଶ54 13𝑙௘−13𝑙௘ −3𝑙௘ଶ 156 −22𝑙௘−22𝑙௘ 4𝑙௘ଶ ⎦⎥⎥⎥

⎤, (3) 

where 𝑙௘  is the length of beam element, 𝐴 is cross-sectional area of beam and 𝐼 is moment of 
inertia of rectangular beam. 

 
Fig. 4. Beam-element 

 
Fig. 2. Mode shapes of fixed-fixed beam 

 
Fig. 3. Mode shapes of cantilever beam 
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Using the above formulation, a MatLab script is developed to extract natural frequencies up to 
six modes for both boundary conditions of a cracked beam. The frequencies of fixed-fixed and 
cantilever beam are tabulated in Table 2 and Table 3 respectively. 

3. Simulation method 

In this section, the simulation process carried out is demonstrated. Aluminium cracked beam 
for both boundary conditions is simulated using Ansys (Version 18.2) to evaluate the natural 
frequencies for respective modes.  

Various meshing types are considered, and simulation is carried out. It is observed that 
Hex-Dominant mesh takes the least computational time, without compromising the accuracy of 
the frequencies. The obtained natural frequencies from simulation of fixed-fixed and cantilever 
beam are tabulated in Table 2 and Table 3 respectively. 

4. Results and discussion 

For the considered cases, Finite Element Analysis and simulation is carried out and the natural 
frequencies up to six modes are evaluated. In this section, the obtained frequencies from both 
methods are tabulated and compared. A significant trend is observed and demonstrated for various 
cases with respect to mode shapes and the position of crack. 

Natural frequencies of fixed-fixed beam of length 𝐿 = 1 m, with varying crack position are 
tabulated in Table 2 and natural frequencies of cantilever beam of length 𝐿 = 0.8 m are tabulated 
in Table 3. 

Table 2. Natural frequencies of fixed-fixed beam 

Mode 
Natural frequencies (Hz) 𝑥௖/𝐿 = 0.0; 𝐿 = 1 m 𝑥௖/𝐿 = 0.5; 𝐿 = 1 m 𝑥௖/𝐿 = 0.33; 𝐿 = 1 m 𝑥௖/𝐿 = 0.25; 𝐿 = 1 m 

MatLab Ansys MatLab Ansys MatLab Ansys MatLab Ansys 
1 31.59 31.67 31.49 31.25 31.52 31.50 31.59 31.56 
2 87.03 87.27 87.01 87.32 86.81 85.89 86.85 86.15 
3 170.60 171.02 170.13 168.01 170.57 170.83 170.23 168.62 
4 282.00 282.58 282.00 282.79 281.60 279.89 281.89 281.90 
5 421.26 421.93 420.09 414.87 420.17 414.90 421.07 420.75 
6 588.37 589.00 588.37 589.46 588.26 588.27 586.96 579.83 

4.1. Trend in mode shapes 

Results reflected in Table 2 are compared to observe a certain trend in mode shapes. As shown 
in Fig. 2, for 2nd, 4th and 6th mode shapes of fixed-fixed beam, there exists a node at mid-point 
of the beam i.e., 𝑥/𝐿 = 0.5, where 𝑥 is any point on the beam. When a crack is present at the 
mid-point i.e., 𝑥௖/𝐿 = 0.5, there is no response/deflection at the crack region for these particular 
modes. Accordingly, the natural frequency of the respective mode of a cracked beam remains 
unchanged when compared to that of an uncracked beam. Whereas in the case of 1st, 3rd and 5th 
modes, there is a reduction in natural frequencies of the cracked beam. This is due to the reduction 
in total stiffness of the cracked beam. Further, this trend is similarly observed in 3rd and 6th modes 
when a crack is present at one-third of the total length of fixed-fixed beam i.e., 𝑥௖/𝐿 = 0.33; and 
in 4th mode when a crack is present at one-fourth of the total length of fixed-fixed beam i.e.,  𝑥௖/𝐿 = 0.25.  

4.2. Comparison of results between MatLab and Ansys 

However, by comparing the natural frequencies obtained from MatLab and Ansys, a 
significant trend is observed. In the case of an uncracked beam, it is observed that the natural 
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frequencies obtained from Ansys is greater than the natural frequencies obtained from MatLab. 
But in the case of a cracked beam, MatLab produces a greater value than Ansys, except for the 
modes where the crack coincides with its node point. For example, in the case of a beam with 
crack at mid-point (𝑥௖/𝐿 = 0.5), it is seen that the natural frequencies of 1st, 3rd and 5th modes 
obtained from MatLab is greater than natural frequencies obtained from Ansys. But in the case of 
2nd, 4th and 6th modes, Ansys produces greater values than Matlab due to its uncracked beam 
behaviour. A similar trend is seen in the case of a beam with crack at one-third of its length 
(𝑥௖/𝐿 = 0.33), at 3rd mode and 6th modes. The same trend is also seen to be following in the case 
of a beam with crack at one-fourth of its length (𝑥௖/𝐿 = 0.25), at 4th mode. 

To validate the above trend, cantilever beam is considered and the natural frequencies up to 
six modes are tabulated in Table 3. 

Table 3. Natural frequencies of Cantilever beam 

Mode 
Natural frequencies (Hz) 𝑥௖/𝐿 = 0.0; 𝐿 = 0.8 m 𝑥௖/𝐿 = 0.5; 𝐿 = 0.8 m 

MatLab Ansys MatLab Ansys 
1 7.44 7.77 7.73 7.72 
2 48.58 48.69 48.36 47.52 
3 136.01 136.29 136.02 136.29 
4 266.55 266.97 265.62 260.94 
5 440.63 441.11 440.62 441.10 
6 658.22 658.58 655.95 644.22 

The mode shapes and respective node points of a cantilever beam is shown in Fig. 3. It is 
observed that 3rd and 5th modes consist a node at mid-point of the beam. Hence, for a cantilever 
beam with crack at its mid-point (𝑥௖/𝐿 = 0.5), the natural frequencies of 3rd and 5th mode remain 
unchanged from an uncracked cantilever beam.  

Similarly, by comparing the natural frequencies of an uncracked cantilever beam obtained 
from MatLab and Ansys, it is observed that Ansys produces a greater value than MatLab. This 
trend is seen to be reversed in the case of a mid-cracked beam, except when the crack coincides 
with the node point of 3rd and 5th modes. 

5. Conclusions 

In the above sections, a mathematical model is derived for a simple beam structure and Finite 
Element Analysis is carried out using MatLab to obtain natural frequencies and mode shapes. 
Simulation process in Ansys is carried out and corresponding natural frequencies are extracted. It 
is found that the natural frequencies follow a certain trend with respect to mode shapes, node 
points and the crack position. It is concluded that whenever a crack coincides with the node point, 
the respective mode behaves similar to an uncracked beam. In performing dynamic analysis of 
cracked beam structures, the deviation between two analysis methods not only depends on the 
computational algorithms but also on the modal parameters with respect to orientation of cracks. 
Knowing these trends broadens scope for enhanced methods of analytical modelling and 
simulation process of cracked beam dynamics. 
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