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Abstract. The robotic arm carrying a moving end effector can be modeled as a rotating beam with 
moving mass. Active vibration control of rotating beam with moving mass using piezoelectric 
actuator is presented. Simply supported beam and cantilevered beam are considered in this 
studying. The equations of the system are derived by Lagrange’s equation with the assumed mode 
method. The linear classical optimal control algorithm with displacement-velocity feedback is 
used to determine the control voltage. The numerical simulations reveal that the transverse 
displacements of the beam can be effectively reduced by the actuators. The effect of rotational 
speed and acceleration to the dynamic responses of the beam are also investigated. 
Keywords: rotating beam, moving mass, active control, piezoelectric actuator. 

1. Introduction 

Piezoelectric materials have been more and more often applied to improve structural behavior. 
Such materials can actuate forces by electrical excitation, making them suitable as actuators for 
vibration control. Besides, they can sense deformation and generate a real-time voltage signal. 
Therefore, they can be used as sensor as well. Many researchers applied the piezoelectric 
actuator/sensor pairs to control the vibration of structures [1-6]. While other researchers used the 
piezoelectric actuators only to suppress the dynamic vibration of structures [7-12]. And some 
control algorithm is used to determine the control voltage. 

The problem of the structures under the influence of moving loads or moving mass are of 
technological importance and has attracted the attention of many researchers in the last few 
decades. There are a lot of works can be found in the published literature [9-19]. And we can find 
some studies in the literature about active vibration control of dynamic response of such structures 
using piezoelectric actuator. Sung [9] and Nikkhoo et al. [10] studied the active control of a simply 
supported Euler-Bernoulli beam under a moving mass using piezoelectric actuator, respectively. 
And latter, Nikkhoo et al. [11] investigated the vibration control of a single span Euler-Bernoulli 
beam with geometrically nonlinear behavior under an arbitrary dynamic loading. Rofooei and 
Nikkhoo [12] investigated a thin rectangular plate with a number of piezoelectric patches bonded 
on its surface under the excitation of a moving mass. The moving mass is assumed to travel along 
linear and orbiting path over the plate respectively. In these studies, a linear classical optimal 
control algorithm with displacement-velocity feedback is used to determine the control voltage. 

The problem becomes more difficult if the beam rotates around one end of it. For example, the 
robotic arm carrying a moving end effector rotates in the vertical plane. For a rotating beam with 
moving mass, the interaction between rigid and flexible body motions is highly demanded. To the 
author’s knowledge, active vibration control of beam with a moving mass that rotates in the 
vertical plane using piezoelectric actuator has not been reported. The author of this paper has 
studied this problem. Simply supported beam as well as cantilevered beam are considered. 
Lagrange’s equation with the assumed mode method is employed to derive the equations of  
motion. The linear classical optimal control algorithm with displacement-velocity feedback is 
used to determine the control voltage. Finally, a number of examples are presented to evaluate the 

https://crossmark.crossref.org/dialog/?doi=10.21595/jve.2019.20017&domain=pdf&date_stamp=2019-08-15


ACTIVE VIBRATION CONTROL OF ROTATING BEAM WITH MOVING MASS USING PIEZOELECTRIC ACTUATOR.  
LIANG ZHAO, YU-PING WU 

 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460, KAUNAS, LITHUANIA 1331 

control effect. 

2. Formulation of the equations of motion 

A uniform simply supported beam with moving mass is displayed in Fig. 1. One support base 
of the beam is fixed, and the other one can rotates around the fixed one. 𝑋𝑌𝑍 is the global reference 
frame, while 𝑥𝑦𝑧 is the rotating reference frame. Angle between the rotating reference frame 𝑥𝑦𝑧 
and the global reference frame 𝑋𝑌𝑍 is denoted as 𝜃. In this studying, 0 ≤ 𝜃 < 𝜋/2 is considered.  

 
Fig. 1. A rotating simply supported beam with moving mass 

The moving mass moves along the beam. 𝑚 and 𝑣 are the mass and traveling speed of the 
moving mass respectively. 𝐿 = 𝑣𝑡 + 0.5𝑣𝑡  is the displacement of the moving mass in the 𝑥 
direction. The moving mass experiences a combination of rotational and linear motion. The 
transverse and axial vibration deformation of the beam in the reference frame 𝑥𝑦𝑧 is denoted as 𝑤  and 𝑢  respectively. There are 𝑁  piezoelectric patches as the actuators are bonded on the 
bottom surface of the beam and positioned by the coordinates 𝑥  and 𝑥 +𝐿  (𝑖 = 1, 2, …, 𝑁 ) in 
the reference frame 𝑥𝑦𝑧. 𝐿  is the length of the piezoelectric patches. ℎ and ℎ  are the thicknesses 
of the beam and piezoelectric patches, respectively. The width of the beam and the piezoelectric 
patches are both 𝑏. Fig. 2 shows a cantilevered beam with moving mass. One end of the beam is 
fixed to a rigid mount and the other end is free. Torque 𝑇 rotates the rigid mount about 𝑌 axis.  

 
Fig. 2. A rotating cantilever beam with moving mass 

Euler-Bernoulli beam theory is employed to analyze the beam. The normal stress and strain of 
the beam in the axial direction are expressed as: 𝜎 = 𝐸𝜀 , (1a) 𝜀 = ∂𝑢∂𝑥 − 𝑧 ∂ 𝑤∂𝑥 , (1b) 

where 𝐸 is the elastic modulus, 𝑢 and 𝑤 are the axial and vertical displacements, respectively. Let 
the piezoelectric patches be polarized along the 𝑧  direction. The axial stress, strain and the 
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electrical displacement of the piezoelectric patches can be expressed as: 𝜎 = 𝑐 𝜀 − 𝑒 𝐸 , (2a) 𝜀 = ∂𝑢∂𝑥 − 𝑧 ∂ 𝑤∂𝑥 , (2b) 𝐷 = 𝑒 𝜀 +∈ 𝐸 , (2c) 

where 𝑐 is the elastic stiffness, 𝐷  is the electrical displacement, 𝐸 = 𝑉(𝑡)/ℎ  is the electrical 
field in the 𝑧 direction [6] and 𝑉(𝑡) is the external applied voltage. ∈  is the dielectric constant, 
and 𝑒  is the piezoelectric constant. 

The global position of an arbitrary material point p on the beam can be expressed as: 𝑅 = 𝐴 ⋅ 𝑟 , (3) 

where 𝐴 is the rotational transformation matrix from the moving coordinate system 𝑥𝑧 to the fixed 
reference frame 𝑋𝑍 and 𝑟  is the location of the point 𝑝 in the rotating coordinate system 𝑥𝑧, they 
can be written as: 𝐴 = cos𝜃 −sin𝜃sin𝜃 cos𝜃 , (4a) 𝑟 = 𝑥 + 𝑢 𝑤 . (4b) 

The velocity of an arbitrary material point 𝑝 is: 

𝑅 = 𝐴 ⋅ 𝑟 + 𝜃 𝑑𝐴𝑑𝜃 𝑟 , (5) 

where 𝜃 is the angular velocity of the beam, and: 𝑟 = 𝑢 𝑤 . (6) 

Substituting Eq. (4) and Eq. (6) into Eq. (5), we will arrive at: 

𝑅 = (𝑢 − 𝑤𝜃)cos𝜃 − (𝑥 + 𝑢)𝜃 + 𝑤 sin𝜃(𝑢 − 𝑤𝜃)sin𝜃 + (𝑥 + 𝑢)𝜃 + 𝑤 cos𝜃 . (7) 

The kinetic energy of the beam can be written as: 

𝐾 = 12 𝜌 𝐴 𝑅 𝑅 𝑑𝑥 + 12 𝐽 𝜃 + 12 𝜌 𝐴 𝑅 𝑅 𝑑𝑥 + 𝐽 𝜃 , (8) 

where 𝜌  and 𝜌  are the mass density, and 𝐴 = 𝑏ℎ and 𝐴 = 𝑏ℎ  are the cross-sectional area of 
the beam and the piezoelectric patches respectively. 𝐽  and 𝐽  are the rotational inertia of the 
beam and the piezoelectric patches respectively. By substituting for the value of 𝑅  from Eq. (7) 
and making use of some trigonometric properties, the kinetic energy of the beam can be 
expressed as: 

𝐾 = 12 𝜌 𝐴 𝑉 𝑑𝑥 + 12 𝐽 𝜃 + 12 𝜌 𝐴 𝑉 𝑑𝑥 + 𝐽 𝜃 , (9) 

where: 
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𝑉 = (𝑢 − 𝑤𝜃) + (𝑥 + 𝑢)𝜃 + 𝑤 . (10) 

The strain energy of the beam, and the strain energy and electric potential energy of the 
piezoelectric patches can be written as: 

𝑈 = 12 𝑏𝜎 𝜀 𝑑𝑧𝑑𝑥/
/ + 12 𝑏 𝜎 𝜀 − 𝐷 𝐸 𝑑𝑧𝑑𝑥/

/ . (11) 

Substituting Eq. (1) and Eq. (2) into Eq. (11), we can obtain: 

𝑈 = 12 𝐸𝐴 𝑢 + 𝐸𝐼 𝑤 d𝑥 + 12 𝑐 𝐴 𝑢 + 𝑐 𝐼 𝑤 + 2𝛼𝑢 𝑤       −2(𝛽 𝑢′ + 𝛽 𝑤′′)𝑉 (𝑡) − 𝛽 𝑉 (𝑡) 𝑑𝑥, (12) 

where: 

𝐼 = 𝑏ℎ12 ,   𝐼 = 13 𝑏 ℎ2 + ℎ − ℎ2 ,   𝛼 = 𝑏ℎ ℎ + ℎ2 , 𝛽 = 𝑒 𝑏,   𝛽 = 𝑒 𝑏(ℎ + ℎ )2 ,   𝛽 = 𝑏 ∈ℎ ,  

and 𝑉 (𝑡) is the control voltage of the 𝑖th piezoelectric patch. The gravitational potential energy 
of the beam can be written as: 

𝑈 = 12 𝜌 𝐴 𝑔𝐿 sin𝜃 + 𝜌 𝐴 𝑔𝐿 𝑥 + 𝐿2 sin𝜃. (13) 

Now, let us consider the kinetic energy and potential energy of the moving mass. For a 
concentrated moving mass, the kinetic energy is: 

𝐾 = 12 𝛿(𝑥 − 𝐿 )𝑚 ⋅ 𝐷𝑅𝐷𝑡 𝐷𝑅𝐷𝑡 𝑑𝑥, (14) 

where: 

𝐷𝑅𝐷𝑡 = (𝑢 − 𝑤𝜃)cos𝜃 − (𝑥 + 𝑢)𝜃 + 𝑑𝑤𝑑𝑡 sin𝜃(𝑢 − 𝑤𝜃)sin𝜃 + (𝑥 + 𝑢)𝜃 + 𝑑𝑤𝑑𝑡 cos𝜃 , (15) 

and: 𝑑𝑤𝑑𝑡 = 𝑤 + 𝑣𝑤 . (16) 

Substituting Eq. (15) into Eq. (14), we will get: 

𝐾 = 12 𝛿(𝑥 − 𝐿 )𝑚 ⋅ (𝑢 − 𝑤𝜃) + (𝑥 + 𝑢)𝜃 + 𝑤 + 𝑣𝑤′ 𝑑𝑥. (17) 

The gravitational potential energy of the concentrated moving mass can be written as: 
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𝑈 = 𝛿(𝑥 − 𝐿 )𝑚𝑔 (𝑢 + 𝑥)sin𝜃 + 𝑤cos𝜃 𝑑𝑥. (18) 

The total kinetic energy and potential energy of the system can be expressed as: 𝐾 = 𝐾 + 𝐾 , (19) 𝑈 = 𝑈 + 𝑈 + 𝑈 . (20) 

Lagrange’s equation with the assumed mode method is used to determine the equation of 
motion of the structural system. To use the assumed mode method, the flexible displacements of 
the beam can be expressed in terms of the generalized coordinates and displacement shape 
functions: 𝑢(𝑥, 𝑡) = 𝜓 (𝑥) ⋅ 𝜒 (𝑡) = 𝜓 ⋅ 𝜒 , (21a) 𝑤(𝑥, 𝑡) = 𝜙 (𝑥) ⋅ 𝑞 (𝑡) = 𝜙 ⋅ 𝑞 , (21b) 

where 𝜓 = 𝜓 , ⋯ , 𝜓 , 𝜒 = 𝜒 , ⋯ , 𝜒 , 𝜙 = 𝜙 , ⋯ , 𝜙  and 𝑞 = 𝑞 , ⋯ , 𝑞 . For 
simply supported beam, the shape functions can be written as: 𝜓 (𝑥) = cos 𝑖𝜋𝐿 𝑥, (22a) 𝜙 (𝑥) = sin 𝑖𝜋𝐿 𝑥,   𝑖 = 1,2, ⋯ , 𝑛, (22b) 

while for cantilevered beam, the shape functions are: 

𝜓 (𝑥) = sin (2𝑖 − 1)𝜋2𝐿 𝑥 (23a) 𝜙 = cosh 𝜆 𝑥𝐿 − cos 𝜆 𝑥𝐿 − cosh(𝜆 ) + cos(𝜆 )sinh(𝜆 ) + sin(𝜆 ) sinh 𝜆 𝑥𝐿 − sin 𝜆 𝑥𝐿 , 𝑖 = 1,2, ⋯ , 𝑛, (23b) 

where 𝜆  is obtained from the following characteristic equation: 1 + cosh(𝜆 )cos(𝜆 ) = 0,   𝑖 = 1,2, … , 𝑛.  (24) 

Lagrange’s equation is written as: 𝑑𝑑𝑡 𝜕𝑙𝜕𝜂 − 𝜕𝑙𝜕𝜂 = 𝐹,   𝑙 = 𝐾 − 𝑈,   𝜂 = (𝜒, 𝑞). (25) 

Substituting the energy expressions into Eq. (25), the equation of motion of the whole 
structural system is gotten: 𝑀 𝑑 + 𝐶 𝑑 + 𝐾 𝑑 + 𝑄 + 𝐹 𝑉(𝑡) = 0, (26) 

where: 

𝑀 = 𝑀 00 𝑀 ,   𝐶 = 0 𝐶𝐶 𝐶 ,   𝐾 = 𝐾 𝐾𝐾 𝐾 ,   𝑄 = 𝑄𝑄 ,  
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𝐹 = 𝐹𝐹 ,   𝑉(𝑡) = 𝑉 (𝑡) ⋯ 𝑉 (𝑡) ,   𝑑 = 𝜒𝑞 .  

The expressions of these matrices are listed in the Appendix. Eq. (26) characterizes the 
piezoelectric actuators driven under the external applied voltages 𝑉(𝑡) . The state-space 
formulation of Eq. (26) is given as: 𝜂 = �̅� 𝜂 + 𝐵 𝑉(𝑡) + 𝐹 , (27) 

where: 

𝜂 = 𝑑𝑑 ,   �̅� = 0 𝐼− 𝑀 𝐾 − 𝑀 𝐶 ,    𝐵 = 0− 𝑀 𝐹 ,    𝐹 = 0− 𝑀 𝑄 .  

3. Active vibration control 

A linear classical optimal control algorithm with displacement-velocity feedback is used to 
determine the control voltage. The cost function to be minimized is given by: 

𝐽 = ( 𝑦 𝑄 𝑦 + 𝑢 𝑅 𝑢 ), (28) 

where: 𝑦 = �̅� 𝜂 , (29) 

is the output equation and �̅�  is the output matrix. 𝑄  and 𝑅  are the semi-positive-definite and 
positive-definite weighting matrices on the outputs and control inputs respectively. Assuming full 
state feedback, the control law is given by: 𝑢 = − 𝐺 𝜂 , (30) 

where 𝐺 is the control gain given by: 

𝐺 = 12 𝑅 𝐵 𝑃 . (31) 𝑃  satisfies the Riccati equation [12]: 

𝑃 �̅� − 12 𝑃 𝐵 𝑅 𝐵 𝑃 + �̅� 𝑃 + 2 𝑄 = 0. (32) 

Substituting Eq. (30) into Eq. (27) leads to: 𝜂 = ( �̅� − 𝐵 𝐺 ) 𝜂 + 𝐹 . (33) 

The controlled response of the system can be gotten by solving Eq. (33). 

4. Numerical simulation 

In this section, several numerical examples are presented to evaluate the active control of 
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rotating beam with moving mass. The material of the beam is steel, which 𝐸 =  209 GPa,  𝜌 = 7800 kg/m3. The piezoelectric material is PZT-5H, which 𝑐 = 49 GPa, 𝜌 = 7500 kg/m3, 𝑒 = –6.5 C/ m2, and ∈ = 1.3×10-8 F/m.  
First, the concentrated mass travelling on the rotating simply supported beam is considered. 

The dimensions of the system are 𝐿 = 2 m, 𝐿 = 0.1 m, 𝑏 = 0.03 m, ℎ = 0.01 m, ℎ = 0.005 m. 
The moving mass is 𝑚 = 0.4 kg. Six piezoelectric patches have been considered to be attached on 
the bottom surface of the beam. Their locations are 𝑥 =  0.4 m, 𝑥 =  0.6 m, 𝑥 =  0.85 m,  𝑥 = 1.05 m, 𝑥 = 1.3 m, 𝑥 = 1.5 m. The initial conditions are: 𝐿 (0) = 0, 𝜃(0) = 0. The 
rotational speed of the beam is 𝜃 = 0.09𝜋 rad/s, and the travelling speed of the moving mass is 𝑣 = 0.4 m/s. The matrix 𝑄  and 𝑅  are given as follows: 𝑄 = 𝑄 𝑄 ,   𝑅 = 0.005 ⋅ 𝐼 × ,  

where 𝑄 = 1 × 10 ⋅ 𝐼 × , 𝑄 = 3 × 10 ⋅ 𝐼 × , and 𝐼  is diagonal matrix. Fig. 3 
shows the transverse displacement of midpoint (𝑤 ) of the rotating simply supported beam. For 
comparison, the responses when the beam does not rotate (𝜃 = 0) are also given. It can be 
observed from Fig. 3 that the transverse displacements of the beam are reduced significantly by 
the actuators. When the beam rotates, the transverse component of gravity of the moving mass 
decreases. Thereby, it can be seen clearly from Fig. 3 that the deflection of the beam is smaller 
when it rotates than it does not. The required control voltages for the piezoelectric patches (p1-p6) 
under different rotational speed are shown in Fig. 4. We can find that larger rotational speed results 
in smaller control voltage.  

 
Fig. 3. Transverse displacements of the rotating simply supported beam 

 
a) 

 
b) 

Fig. 4. Control voltage of each piezoelectric patch for the rotating simply supported beam 



ACTIVE VIBRATION CONTROL OF ROTATING BEAM WITH MOVING MASS USING PIEZOELECTRIC ACTUATOR.  
LIANG ZHAO, YU-PING WU 

 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460, KAUNAS, LITHUANIA 1337 

The moving mass moves with variable speed is also considered. The movement rule of the 
system is given as follows:  

At the beginning, 𝐿 = 0, 𝑣 = 0, 𝜃 = 0;  
When 0 ≤ 𝑡 ≤ 2, 𝑣 = 0.5𝑡, 𝑣 =0.5m/s2, 𝜃 = 0.05𝜋 rad/s; 
When 2 < 𝑡 ≤ 4, 𝑣 = 1 − 0.5(𝑡 − 2), 𝑣 = –0.5 m/s2, 𝜃 = 0.05𝜋 rad/s;  
When 4 < 𝑡 ≤ 6, 𝑣 = −0.5(𝑡 − 4), 𝑣 = –0.5 m/s2, 𝜃 = 0.05𝜋 rad/s;  
When 6 < 𝑡 ≤ 8, 𝑣 = −1 + 0.5(𝑡 − 6), 𝑣 = 0.5 m/s2, 𝜃 = 0.05𝜋 rad/s. 
The numerical simulation results are given in Fig. 5. As we expected, the vibration of the beam 

is suppressed. 

 
a) 

 
b) 

 
c) 

Fig. 5. When the moving mass moves with variable speed: a) transverse displacement of midpoint  
of beam, b) control voltage, c) trajectory of the moving mass 

In order to investigate the effect of angular acceleration to the system, two cases are  
considered: Case 1, 𝑣 = 0.4 m/s, 𝜃 = 0.05𝜋 rad/s, 𝜃 = 0; Case 2, 𝜃 = 0, 𝜃 = 0.02𝜋 rad/s2. The 
initial conditions are: 𝐿 (0) = 0, 𝜃(0) = 0. At the end of time (5 s), the beam has the same 
angular displacement (0.25𝜋) in the two cases. The simulation results are displayed in Fig. 6. It is 
observed that the beam has larger transverse displacement in Case 2. This is caused by inertial 
force due to angular acceleration. Obviously, the transverse displacements of the beam are 
significantly reduced in both cases. The required control voltages for the piezoelectric patches of 
the two cases are displayed in Fig. 7. We can see that larger control voltages are required in Case 2. 

Finally, the concentrated mass travelling on the rotating cantilevered beam is investigated. The 
length of the beam is 𝐿 = 1 m. Other dimensions of the system are the same as the rotating simply 
supported beam. Three piezoelectric patches are used in this studying and their locations are 𝑥 = 0, 𝑥 = 0.2 m, 𝑥 = 0.4 m. The movement rule of the system is given as follows: 

At the beginning, 𝐿 = 0, 𝑣 = 0, 𝜃 = 0; 
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When 0 ≤ 𝑡 ≤ 2, 𝑣 = 0.25𝑡, 𝑣 = 0.25 m/s2, 𝜃 = 0.05𝜋 rad/s; 
When 2 < 𝑡 ≤ 4, 𝑣 = 0.5 − 0.25(𝑡 − 2), 𝑣 = –0.25 m/s2, 𝜃 = 0.05𝜋 rad/s; 
When 4 < 𝑡 ≤ 6, 𝑣 = −0.25(𝑡 − 4), 𝑣 = –0.25 m/s2, 𝜃 = 0.05𝜋 rad/s; 
When 6 < 𝑡 ≤ 8, 𝑣 = −0.5 + 0.25(𝑡 − 6), 𝑣 = 0.25 m/s2, 𝜃 = 0.05𝜋 rad/s. 

 
Fig. 6. Transverse displacements of Case 1 and Case 2 

 
a) 

 
b) 

Fig. 7. Control voltage of each piezoelectric patch of Case 1 and Case 2 

The matrix 𝑄  and 𝑅  are the same as in the previous examples. We can observe from Fig. 8 
that the transverse displacements are reduced significantly, where 𝑤  denotes the tip deflection of 
the beam. The trajectory of the moving mass is shown in Fig. 9.  

 
a) 

 
b) 

Fig. 8. Tip displacements and control voltages of the rotating cantilevered beam 
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Fig. 9. Trajectory of the moving mass when 𝑣 = 0.2 m/s, 𝜃 = 0.05𝜋 rad/s 

5. Conclusions 

In present paper, active vibration control of rotating beam with moving mass using 
piezoelectric actuator is investigated. Rotating simply supported beam and cantilevered beam are 
considered in our studying. The equations of the system are derived by Lagrange’s equation with 
the assumed mode method. The linear classical optimal control algorithm with 
displacement-velocity feedback is used to determine the control voltage.  

Some numerical examples are employed to evaluate the control performances. It is found that 
the vibration of the beam can be effectively reduced by the actuators both for rotating simply 
supported beam and cantilevered beam. Moreover, larger rotational speed results in smaller 
deflection and control voltage. When there is a uniform angular acceleration, larger vibration 
amplitudes are gotten. This is caused by inertial force due to angular acceleration. 

Acknowledgement 

This work was funded by the Shanghai Education Commission Project for Academic Degree 
Construction and Research on Industrial Robot Applications under Project No. 230001-17-13. 

References 

[1] Sun B., Huang D. Vibration suppression of laminated composite beams with a piezoelectric damping 
layer. Composite Structures, Vol. 53, Issue 4, 2001, p. 437-447. 

[2] Chen L. W., Lin C. Y., Wang C. C. Dynamic stability analysis and control of a composite beam with 
piezoelectric layers. Composite Structures, Vol. 56, Issue 1, 2002, p. 97-109. 

[3] Lin J. C., Nien M. H. Adaptive control of a composite cantilever beam with piezoelectric 
damping-modal actuators/sensors. Composite Structures, Vol. 70, Issue 2, 2005, p. 170-176. 

[4] Qiu Z. C., Zhang X. M., Wu H. X., Zhang H. H. Optimal placement and active vibration control for 
piezoelectric smart flexible cantilever plate. Journal of Sound and Vibration, Vol. 301, Issues 3-5, 
2007, p. 521-543. 

[5] Kumar K. R., Narayanan S. Active vibration control of beams with optimal placement of 
piezoelectric sensor/actuator pairs. Smart Materials and Structures, Vol. 17, Issue 5, 2008, p. 055008. 

[6] Song Z. G., Li F. M. Active aeroelastic flutter analysis and vibration control of supersonic beams 
using the piezoelectric actuator/sensor pairs. Smart Materials and Structures, Vol. 20, 2011, p. 055013. 

[7] Raja S., Prathap G., Sinha, P. K. Active vibration control of composite sandwich beams with 
piezoelectric extension-bending and shear actuators. Smart Materials and Structures, Vol. 11, Issue 1, 
2002, p. 63-71. 

[8] Hu Y. R., Ng A. Active robust vibration control of flexible structures. Journal of Sound and Vibration, 
Vol. 288, Issues 1-2, 2005, p. 43-56. 

[9] Sung Y. G. Modelling and control with Piezo-Actuators for a simply supported beam under a moving 
mass. Journal of Sound and vibration, Vol. 250, Issue 4, 2002, p. 617-626. 



ACTIVE VIBRATION CONTROL OF ROTATING BEAM WITH MOVING MASS USING PIEZOELECTRIC ACTUATOR.  
LIANG ZHAO, YU-PING WU 

1340 JOURNAL OF VIBROENGINEERING. AUGUST 2019, VOLUME 21, ISSUE 5  

[10] Nikkhoo A., Rofooeia F. R., Shadnam M. R. Dynamic behavior and modal control of beams under 
moving mass. Journal of Sound and Vibration, Vol. 306, Issues 3-5, 2007, p. 712-724. 

[11] Nikkhoo A., Amankhani M., Ghafari H. Vibration suppression in smart thin beams with 
piezoelectric actuators under a moving load/mass accounting for large deflections of the base structure. 
Indian Journal of Science and Technology, Vol. 7, Issue 2, 2014, p. 211-220. 

[12] Rofooei F. R., Nikkhoo A. Application of active piezoelectric patches in controlling the dynamic 
response of a thin rectangular plate under a moving mass. International Journal of Solids and 
Structures, Vol. 46, Issues 11-12, 2009, p. 2429-2443. 

[13] Lin Y. H., Trethewey W. M. Active vibration suppresion of beam structures subjected to moving 
loads: A feasibility study using finite elements. Journal of Sound and Vibration, Vol. 166, Issue 3, 
1993, p. 383-395. 

[14] Ryu B. J., Kong Y. S. Dynamic Responses and Active Vibration Control of Beam Structures under a 
Travelling Mass. Intech Publisher, 2012. 

[15] Esmailzadeh E., Ghorashi M. Vibration analysis of beams traversed by uniform partially distributed 
moving masses. Journal of Sound and Vibration, Vol. 184, Issue 1, 1995, p. 9-17. 

[16] Michaltsos G., Sophianopoulos D., Kounadis A. N. The effect of a moving mass and other 
parameters on the dynamic response of a simply supported beam. Journal of Sound and Vibration, 
Vol. 191, Issue 3, 1996, p. 357-362. 

[17] Esmailzadeh E., Ghorashi M. Vibration analysis of a Timoshenko beam subjected to a travelling 
mass. Journal of Sound and Vibration, Vol. 199, Issue 4, 1997, p. 615-628. 

[18] Mofid M., Shadnam M. On the response of beams with internal hinges, under moving mass. 
Advances in Engineering Software, Vol. 31, Issue 5, 2000, p. 323-328. 

[19] Wu J. J. Dynamic analysis of an inclined beam due to moving loads. Journal of Sound and Vibration, 
Vol. 288, Issues 1-2, 2005, p. 107-131. 

Appendix 

The matrices in Eq. (26) are given as: 

𝑀 = 𝜌 𝐴 𝜓 𝜓 𝑑𝑥 + 𝜌 𝐴 𝜓 𝜓 𝑑𝑥 + 𝑚( 𝜓 𝜓 )| , 
𝑀 = 𝜌 𝐴 𝜙 𝜙 𝑑𝑥 + 𝜌 𝐴 𝜙 𝜙 𝑑𝑥 + 𝑚( 𝜙 𝜙 )| , 
𝐶 = −2𝜃𝜌 𝐴 𝜙 𝜓 𝑑𝑥 − 2𝜃𝜌 𝐴 𝜙 𝜓 𝑑𝑥 − 2𝜃𝑚( 𝜙 𝜓 )| , 𝐶 = − 𝐶 ,   𝐶 = 𝑣𝑚( 𝜙 𝜙 − 𝜙 𝜙 )| , 𝐾 = 𝐸𝐴 𝜓 𝜓 − 𝜃 𝜌 𝐴 𝜓 𝜓 𝑑𝑥      + 𝑐 𝐴 𝜓′ 𝜓′ −𝜃 𝜌 𝐴 𝜓 𝜓 𝑑𝑥 − 𝜃 𝑚( 𝜓 𝜓 )| , 

 

𝐾 = −𝜃𝜌 𝐴 𝜙 𝜓 𝑑𝑥 + 𝛼 𝜙 𝜓 − 𝜃𝜌 𝐴 𝜙 𝜓 𝑑𝑥      −𝑚 𝜃 𝜙 𝜓 + 𝑣𝜃 𝜙 𝜓 , 𝐾 = 𝜃𝜌 𝐴 𝜓 𝜙 𝑑𝑥 + 𝛼 𝜓 𝜙 + 𝜃𝜌 𝐴 𝜓 𝜙 𝑑𝑥      +𝑚 𝜃 𝜓 𝜙 − 𝑣𝜃 𝜓 𝜙 , 
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𝐾 = 𝐸𝐼 𝜙 𝜙 − 𝜃 𝜌 𝐴 𝜙 𝜙 𝑑𝑥      + 𝑐 𝐼 𝜙 𝜙 −𝜃 𝜌 𝐴 𝜙 𝜙 𝑑𝑥      +𝑚 (𝑣 − 𝑣 ) 𝜙 𝜙 − 𝜃 𝜙 𝜙 ,  
𝑄 = −𝜃 𝜌 𝐴 𝑥 𝜓 𝑑𝑥 − 𝜃 𝜌 𝐴 𝑥 𝜓 𝑑𝑥      +𝑚 𝑔sin𝜃 − 𝜃 𝑥 𝜓 , 𝑄 = 𝜃𝜌 𝐴 𝑥 𝜙 𝑑𝑥 + 𝜃𝜌 𝐴 𝑥 𝜙 𝑑𝑥      +𝑚 𝑔cos𝜃 − 𝜃𝑥 𝜙 − 𝑣𝜃𝑥 𝜙 , 𝐹 = 𝐹 ⋯ 𝐹 ,   𝐹 = 𝐹 ⋯ 𝐹 , 

where: 

𝐹 = −𝛽 𝜓 𝑑𝑥,     𝐹 = −𝛽 𝜙 𝑑𝑥 ,   𝑖 = 1,2, ⋯ , 𝑁 .  
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