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Abstract. In this paper, we applied three different control methods; Positive Position Feedback 
(PPF), Integral Resonance Control (IRC) and Nonlinear Integrated Positive Position Feedback 
(NIPPF) added to a Duffing oscillator system subjected to harmonic force. An analytic solution is 
introduced using the multiple scales perturbation technique (MSPT) to solve the nonlinear 
differential equations, which simulate the system with NIPPF controller. Before and after control 
at the primary and superharmonic resonances, the nonlinear systems’ steady-state amplitude and 
stability are studied and examined. The influences of various parameters of the system after being 
connected to NIPPF are illustrated. Optimum working conditions for the NIPPF controller are 
obtained at internal resonance ratio 1:1. A Comparison is also made to validate the closeness 
between the numerical solution and the analytical perturbative one at time-history and frequency 
response curves (FRC). Finally, a comparison with the available results in the literature is 
presented. From this comparison, we find that the best control to the system is via the NIPPF 
controller. 
Keywords: vibration control, nonlinear integral positive position feedback, multiple scales 
perturbation technique, stability. 

1. Introduction 

Nonlinear vibrations extensively take place in engineering construction. Examples of this are 
bridges, aircraft, micro-electro-mechanical devices, and elevator cables. Nonlinear vibrations and 
unpredictable chaotic oscillations may result in short-term action structure failures. In this respect, 
Fryba [1] has an inclusive realization as he offered an important number of solutions for 
vibrational problems subjected to moving load. Moreover, Yang et al. [2] inspected the vibration 
conductance of a Timoshenko beam resting on a nonlinear Pasternak basis and under a moving 
force. In addition, Jung et al. [3] used the positive position feedback (PPF) controller to decrease 
the strip vibration. On the other hand, El-Ganaini et al. [4] have conducted a study for PPF 
controller that was aiming at reducing the nonlinear dynamical system’s vibration amplitude at 
the existence of 1:1 internal resonance and primary resonance.  

In [5], Ghadiri et al have examined some considerable effects imposed by thermal 
environments to the nonlinear vibrations of a just supported Euler-Bernoulli nanobeam, which 
depends on a viscoelastic fundamental with surface elasticity. In addition, the Galerkin and the 
multiple scales technique were applied to disband the problem. Russell et al. [6] have inserted a 
modified integral resonant control (IRC) scheme with the aim to increase the bandwidth position 
of lightly damped resonant systems. Then, a method for reducing the order of the controller 
through a selective choice of feed through was concluded, which was conflicting with standard 
IRC. After this, controller parameters have been analytically derived in order to supply maximum 
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tracking bandwidth.  
Exploring the work of Omidi and Mahmoodi [7] introduced the NIPPF control method as a 

new technique that makes use of positive aspects of IRC and PPF approaches to curb nonlinear 
system. There was more achievement of the NIPPF when comparing with the other techniques. 
Using the method of multiple scales, an overall control pattern was analyzed. On the other hand, 
Zulli and Luongo [8] analyzed the impact of using the non-linear energy sink (NES) as a passive 
control for vibration relating primary and subharmonic resonance. There are three different 
situations had been taken into consideration, the first one is the external harmonic excitation: 1:1 
resonance than, 1:3 resonance and finally concurrent 1:1 and1:3 resonance. In addition, the 
response of the system was taken into account after applying the multiple scale/harmonic balance 
technique (MSHBT). The later requires achieving an amplitude modulation of the mathematical 
system in the slow time scales. In another work, by Eissa and Saeed [9], the PPF controller was 
suggested to decrease the nonlinear vibrations of a horizontally confirmed Jeffcott rotor model. In 
this work, they presented a second order approximate solution applying MSPT. The bifurcation 
test of the Jeffcott-rotor system before and after control has been investigated. The influences of 
the several controller parameters on the system FRC has been taken in to account. In this respect, 
Saeed and Kamel [10] were studying the whirling activity of a nonlinear Jeffcott rotor model. 
They were using a tuned PPF absorber to decrease the oscillation of this system. The slow-flow 
modulating equations have been given by applying the MSPT. Eissa et al. [11] utilized the MSPT 
to find an analytical solution that analyzes the nonlinear performance of the describing model. The 
stability investigation was presented to define stable and unstable areas. Hilla et al. [12] did a 
comparison between the direct normal form technique, harmonic balance, and the multiple scales 
technique. As a result, from the studying of an unforced, undamped Duffing oscillator, it has 
concluded that for approaching backbone curves, all procedures represent acceptable accuracy 
when the amplitude response is low.  

Amer et al. [13], studied the nonlinear oscillations with time delay feedback of a parametric 
excited Duffing oscillator system. The MSPT has been employed to find the frequency response 
equations (FRE). In addition, the stability of the nonlinear solution was analyzed. The influences 
of the several parameters of the structure were illustrated. Moreover, Bauomy and EL-Sayed [14] 
studied the active vibration control of a rectangular thin plate model subjected to external and 
parametric excitation forces. The MSPT was utilized to solve the nonlinear differential equations 
then, the FRE was illustrated to find the steady-state solutions and to test the influences of several 
parameters on the structure performance. 

In [15-23], Deng et al have studied different algorithms for solving the optimization problems, 
such as CACO, CACOAMS, GA-PSO-ACO, ACO, MGACACO, and DOADAPO. Zhao et al. 
[24] has proposed a novel vibration suppression method it the fractional order control strategy that 
introduced into vibration suppression for suppressing the vibration of motor. 

Summary of the above study was the main effect on PPF and IRC and NIPPF controller to 
reduce vibration in different systems. However, in this article, we are aiming at studying the 
influences of PPF, IRC and NIPPF controllers on our system. We will show that the best one is 
the NIPPF controller. The paper is organized as follows: In Section 2 we study the mathematical 
model and controller design which is affected by external primary and super harmonic resonance. 
Then make a Comparison between the three controllers to testify the effectiveness of the proposed 
control. In Section 3 we explore an approximate solution for the system when connected to NIPPF 
controller using the procedure of the MSPT. The stability behavior of the nonlinear solution is 
explored. The influences of several system parameters of the oscillating model are examined. 
Section 4 is devoted to study the influences of several system parameters of the oscillating model. 
The comparison between both numerical and analytical results is performed. In addition, we do a 
comparison between our results and other results in the literature. At the end we give our 
conclusions in Section 5. 
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2. Mathematical model and controller design 

The equation of motion is presented as one degree of freedom damped Duffing oscillator 
system, which is affected by a bi-frequency harmonic force as shown in Fig. 1. Indicating 𝑥 as the 
dimensionless displacement of the principle oscillator. The dimensionless equation of motion as 
presented in [8] is modified as:  𝑥ሷ(𝑡) + 2𝜉௦𝜔௦𝑥ሶ (𝑡) + 𝜔௦ଶ𝑥(𝑡) + 𝜅௦𝑥(𝑡)ଷ − 𝐹ଵcos(Ω𝑡) − 𝐹ଷcos(3Ω𝑡) = 𝐹௖(𝑡), (1) 

where over- dot is the differentiation with respect to time, 𝜉௦ is the linear damping factor for the 
main Duffing oscillator, 𝜔௦ is resonant frequency of the main system, 𝜅௦ is the coefficient of weak 
non- linear stiffness, 𝐹ଵ  and 𝐹ଷ  are the 1:1 and 1:3 resonant harmonic forces amplitudes, 
respectively, Ω is the external excitation frequency and 𝐹௖(𝑡) is the control input.  

 
Fig. 1. Schematic graph of the nonlinear oscillator undergone bi-frequency harmonic force 

A description of the mathematical technique for PPF, IRC and NIPPF absorbers is supplied as 
follows. Starting with the technique for the PPF absorber, we have: 𝑦ሷ(𝑡) + 2𝜉௣𝜔௣𝑦ሶ(𝑡) + 𝜔௣ଶ𝑦(𝑡) = 𝜆௣𝑥(𝑡), (2) 

where 𝑦(𝑡) is the state-variable for the PPF controller, 𝜉௣ , 𝜔௣ 
are the damping factor and resonant 

frequency of the PPF controller, respectively, 𝜆௣ >  0 is the controller gain. We will put  𝐹௖(𝑡) = 𝑘௣ 𝑦(𝑡) in Eq. (1) for 𝑘௣ > 0 in order to close the feedback loop.  
Moving to the IRC controller, the model will have the form: 𝑧ሶ(𝑡) + 𝜔௭𝑧(𝑡) = 𝜆௭𝑥(𝑡), (3) 

where 𝑧(𝑡) is the state- variable for the IRC controller, 𝜔௭  is the lossy integrator’s frequency, 𝜆௭ > 0 is the controller gain. Again, we set 𝐹௖(𝑡) = 𝑘௭ 𝑦(𝑡) in Eq. (1) for 𝑘௭ > 0 to close the 
feedback loop. 

Depending on the two previous controller Eqs. (2) and (3), the NIPPF controller can be 
described as: 

൜𝑢ሷ (𝑡) + 2𝜉ே𝜔ே𝑢ሶ (𝑡) + 𝜔ேଶ 𝑢(𝑡) + 𝛿𝑢(𝑡)ଷ = 𝜆௨𝑥(𝑡),𝑣ሶ (𝑡) + 𝜎௩𝑣(𝑡) = 𝜆௩𝑥(𝑡),  (4) 𝐹௖(𝑡) = 𝑘௨𝑢(𝑡) + 𝑘௩𝑣(𝑡), (5) 

where 𝑢(𝑡)  is the second-order section variable for the NIPPF controller and 𝑣(𝑡)  is the 
integrating section variable for the NIPPF controller. 𝜉ே, 𝜔ே are the damping factor and internal 
frequency for the controller, respectively. 𝜆௨ > 0 and 𝜆௩ > 0 are the gains of controller, 𝑘௨ is the 
positive scalar feedback gain of the second- order section, 𝑘௩ is the positive scalar feedback gain 
of integrating section, 𝜎௩ is the lossy integrator’s frequency and 𝛿 is the non-linearity parameter.  

To illustrate the three types for controllers which are connected to a Duffing oscillator system, 

1 3( ) (3 )F Cos t F Cos tΩ + Ω

,s sω κ

2 s sξ ω
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we presented the following diagram which appeared in Fig. 2. 

 
Fig. 2. Schematic graph of the three proposed controllers 

2.1. Time history and phase plane by numerical simulation  

In this section, Primary resonance ( 𝐹෠ଵ ≠  0, 𝐹෠ଷ =  0) and super harmonic resonance  
(𝐹෠ଵ = 0, 𝐹෠ଷ ≠ 0 ) are solved numerically by using the Runge-Kutta fourth-order method (RK-4) 
with the selected values of the system and the controller parameters introduced in Table 1. This is 
done for equations that describe a nonlinear dynamic system without and after effecting different 
types of controls (IRC-PPF-NIPPF) to show the best control. 

Table 1. Numerical values of the system and NIPPF controller parameters. 
Parameter Value Parameter Value Parameter Value 𝜉௦ 0.003 𝜅௦ –30 𝜔௦ 1 𝜉ே 0.003 𝜆௨ 0.5 𝜆௩ 0.5 𝜔ே 1 𝐾௨ 0.2 𝐾௩  0.2 𝛿 0 𝜎௩ 1 – – 

From Fig. 3 to Fig. 6, we have reduced the vibration of the dynamic system of its maximum 
value to about 96.996 % after using PPF controller at 𝑡 = 700 sec and about 1.17 % without any 
confusion after 𝑡 = 200 sec and about 99.183 % after using NIPPF controller at 𝑡 = 300 sec. 
These results are similar in primary resonance (Ω ≅ 𝜔௦, 𝜔ே ≅ 𝜔௦) when 𝐹ଵ = 0.01, 𝐹ଷ = 0 and 
super harmonic resonance case ( Ω ≅ 𝜔௦/3, 𝜔ே ≅ 𝜔௦) when 𝐹ଵ = 0, 𝐹ଷ = 0.01 . This leads to the 
effectiveness of the absorber 𝐸௔ (𝐸௔ = steady-state amplitude of the system before controller / 
steady-state amplitude of the system after controller) is about 33.29 after using PPF controller and 
about 1.1349 after using IRC controller and about 121.86 after using NIPPF controller for the 
essential system.  

From these results, the NIPPF controller is the best control to suppress the vibration at short 
time with the good reduction performance and with small chaotic compared to IRC and PPF as 
shown from Fig. 3 to Fig. 10. 
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Fig. 3. Time estimation of the main system when 𝐹ଵ = 0.01, 𝐹ଷ = 0 or when 𝐹ଵ = 0, 𝐹ଷ = 0.01  

before controlled system 

 
Fig. 4. Time estimation of the main system when 𝐹ଵ = 0.01, 𝐹ଷ = 0 or when 𝐹ଵ = 0, 𝐹ଷ = 0.01  

with PPF controlled only 
 

 
Fig. 5. Time estimation of the main system when 𝐹ଵ = 0.01, 𝐹ଷ = 0 or when 𝐹ଵ = 0, 𝐹ଷ = 0.01  

with IRC controlled only 

 
Fig. 6. Time estimation of the main system when 𝐹ଵ = 0.01, 𝐹ଷ = 0 or when 𝐹ଵ = 0, 𝐹ଷ = 0.01  

after NIPPF controlled  
 

 
Fig. 7. Phase plane of the main system at 𝐹ଵ = 0.01, 𝐹ଷ = 0 or when 𝐹ଵ = 0, 𝐹ଷ = 0.01 

before controlled system 

 
Fig. 8. Phase plane of the main system at 𝐹ଵ = 0.01, 𝐹ଷ = 0 or when 𝐹ଵ = 0, 𝐹ଷ = 0.01 

with PPF controlled only 
 

 
Fig. 9. Phase plane of the main system at  𝐹ଵ = 0.01, 𝐹ଷ = 0 or when 𝐹ଵ = 0, 𝐹ଷ = 0.01  

with IRC controlled only 

 
Fig. 10. Phase plane of the main system at 𝐹ଵ = 0.01, 𝐹ଷ = 0 or when 𝐹ଵ = 0, 𝐹ଷ = 0.01  

after NIPPF controlled 
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3. Mathematical analysis 

Applying the multiple scales perturbation technique MSPT, Eqs. (1) and (4) can be solved by 
imposing the following forms: 𝑥(𝑡; 𝜀) =  𝑥଴(𝑇଴, 𝑇ଵ) + 𝜀 𝑥ଵ(𝑇଴, 𝑇ଵ) + 𝑂(𝜀ଶ), (6) 𝑢(𝑡; 𝜀) =  𝑢଴(𝑇଴, 𝑇ଵ) + 𝜀 𝑢ଵ(𝑇଴, 𝑇ଵ) + 𝑂(𝜀ଶ), (7) 𝑣(𝑡; 𝜀) =  𝑣଴(𝑇଴, 𝑇ଵ) + 𝜀 𝑣ଵ(𝑇଴, 𝑇ଵ) + 𝑂(𝜀ଶ), (8) 

where 𝜀  is a small dimensionless parameter of the perturbation and 0 < 𝜀 ≤  1. 𝑇௜ = 𝜀௜𝑡  
(𝑛 = 0, 1), where the fast-varying time scale will be in the form 𝑇଴ = 𝑡, and then the slowly 
varying time scale can be defined as 𝑇ଵ = 𝜀𝑡. Therefore, the time derivatives listed such as: 𝑑𝑑𝑡 = 𝐷଴ + 𝜀𝐷ଵ + ⋯, (9) 𝑑ଶ𝑑𝑡ଶ = 𝐷଴ଶ + 2𝜀𝐷଴𝐷ଵ + ⋯, (10) 

where 𝐷௝ = ∂ ∂𝑇௝⁄  , 𝑗 = 0,1.  
One can scale the parameters of Eqs. (1) and (4) as follows 𝜉௦ = 𝜀𝜉መ௦, 𝜉ே = 𝜀𝜉መே, 𝜅௦ = 𝜀𝜅̂௦, 𝑘௨ = 𝜀𝑘෠௨, 𝑘௩ = 𝜀𝑘෠௩, 𝛿 = 𝜀𝛿መ, 𝜆௨ = 𝜀𝜆መ௨, 𝐹ଵ = 𝜀𝐹෠ଵ, 𝐹ଷ = 𝜀𝐹෠ଷ . This is justified, in order to make 

all parameters appear in perturbation equations when applying MSPT.  
Substituting Eqs. (6)-(10) into Eqs. (1), (4) and comparing the coefficients of identical  

powers of 𝜀. 
Order (𝜀଴): (𝐷଴ଶ + 𝜔௦ଶ)𝑥଴ = 0, (11) (𝐷଴ଶ + 𝜔ேଶ )𝑢଴ = 0, (12) (𝐷଴ + 𝜎௩)𝑣଴ = 𝜆௩𝑥଴. (13) 

Order (𝜀): (𝐷଴ଶ + 𝜔௦ଶ)𝑥ଵ = 𝐹෠ଵcos(Ω𝑡) + 𝐹෠ଷcos(3Ω𝑡) + 𝑘෠௨𝑢଴ + 𝑘෠௩𝑣଴ − 𝜅̂௦𝑥଴ଷ      −2𝜉መ௦𝜔௦𝐷଴𝑥଴ − 2𝐷଴𝐷ଵ𝑥଴, (14) (𝐷଴ଶ + 𝜔ேଶ )𝑢ଵ = 𝜆መ௨𝑥଴ − 𝛿መ𝑢଴ଷ − 2 𝜉መே𝜔ே𝐷଴𝑢଴ − 2𝐷଴𝐷ଵ𝑢଴, (15) (𝐷଴ + 𝜎௩)𝑣ଵ = 𝜆௩𝑥ଵ − 𝐷ଵ𝑣଴. (16) 

The differential Eqs. (11) and (12) are assumed to have solutions in the form of: 𝑥଴ = 𝐴(𝑇ଵ)exp(𝑖𝜔௦𝑇଴) + 𝑐𝑐, (17) 𝑢଴ = 𝐵(𝑇ଵ)exp(𝑖𝜔ே𝑇଴) + 𝑐𝑐, (18) 

where the complex functions in 𝑇ଵ are 𝐴, 𝐵, 𝑐𝑐. indicate the previous complex conjugate terms of 
Eqs. (17) and (18). 

Substituting from Eq. (17) into (13), and solving the resulting ODE, we get the following 
solution: 

𝑣଴ = 𝐶(𝑇ଵ)exp(−𝜎௩𝑇଴) + 𝜆௩(𝜎௩ − 𝑖𝜔௦)(𝜔௦ଶ + 𝜎௩ଶ) 𝐴(𝑇ଵ)exp(𝑖𝜔௦𝑇଴) + 𝑐𝑐, (19) 

where 𝐶(𝑇ଵ) will be determined later. Substitution Eqs. (17)-(19) into Eqs. (14) and (15) leads the 
general solutions for 𝑥ଵ and 𝑢ଵ can be obtained as: 
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𝑥ଵ = 𝐸ଵexp(𝑖𝜔ே𝑇଴) + 𝐸ଶexp(3𝑖𝜔௦𝑇଴) + 𝐸ଷexp(𝑖Ω𝑇଴) + 𝐸ସexp(−𝜎௩𝑇଴)       +𝐸ହexp(3𝑖Ω𝑇଴) + 𝑐𝑐, (20) 𝑢ଵ = 𝐻ଵexp(3𝑖𝜔ே𝑇଴) + 𝐻ଶexp(𝑖𝜔௦𝑇଴) + 𝑐𝑐, (21) 

where the complex functions in 𝑇ଵ are 𝐸௟ (𝑙 = 1, 2, ..., 5), 𝐻ଵ and 𝐻ଶ that are presented at appendix. 
To form the ODE for 𝑣ଵ, substituting Eqs. (19) and (22) into Eq. (16), the solution of this ODE is: 𝑣ଵ = 𝑀ଵexp(3𝑖𝜔௦𝑇଴) + 𝑀ଶexp(𝑖𝜔௦𝑇଴) + 𝑀ଷexp(𝑖Ω𝑇଴)      +𝑀ସexp(𝑖𝜔ே𝑇଴) + 𝑀ହexp(3𝑖Ω𝑇଴) + 𝑐𝑐, (22) 

where 𝑀௠ (𝑚 = 1, 2, ..., 5) are complex functions in 𝑇ଵ, that are presented at appendix. 
The approximate solution of Eqs. (1), (4) can be achieved by exchanging Eqs. (17)-(22) into 

Eqs. (6)-(8). 
Putting the summation of secular terms in the ODE for 𝑣ଵ equivalence to zero, so as to compute 

the value of 𝐶(𝑇ଵ). Hence we have: 

𝐶(𝑇ଵ) = 𝐾exp ቆ 𝜆௩𝑘෠௩𝑇ଵ(𝜎௩ଶ + 𝜔௦ଶ)ቇ (23) 

where 𝐾 is a constant. 

3.1. Periodic solution 

3.1.1. Primary resonance (𝑭෡𝟏 ≠ 0, 𝑭෡𝟑 = 0) 

The steady state solution close to the primary resonance case (Ω ≅ 𝜔௦, 𝜔ே ≅ 𝜔௦) is considered 
from the first order approximation solution. Then, the detuning parameters 𝜎ଵ and 𝜎ଶ will be add 
such as:  Ω = 𝜔௦ + 𝜎ଵ = 𝜔௦ + 𝜀𝜎ොଵ,   𝜔ே = 𝜔௦ + 𝜎ଶ = 𝜔௦ + 𝜀𝜎ොଶ. (24) 

Substituting Eq. (24) into the secular terms elimination, then the following differential 
equations are obtained: 𝐷ଵ𝐴 = 𝑖Γ෠ଵ𝐴ଶ𝐴̅ + Γ෠ଶ𝐴 + 𝑖Γ෠ଷ𝐴 + 𝑖Γ෠ସexp(𝑖𝜎ොଵ𝑇ଵ) + 𝑖Γ෠ହ𝐵exp(𝑖𝜎ොଶ𝑇ଵ), (25) 𝐷ଵ𝐵 = 𝜂̂ଵ𝐵 + 𝑖𝜂̂ଶ𝐵ଶ𝐵ത + 𝑖𝜂̂ଷAexp(−𝑖𝜎ොଶ𝑇ଵ), (26) 

where Γ௡ = 𝜀Γ෠௡ (𝑛 = 1, 2, 3, 4, 5), and 𝜂௥ = 𝜀𝜂̂௥ (𝑟 = 1, 2, 3) are constants (see Appendix). 
Using Eq. (9), we will define the derivative of 𝐴(𝑇ଵ) and 𝐵(𝑇ଵ) at the first order with respect 

to 𝑡 such as: 𝑑𝑑𝑡 𝐴 = 𝜀𝐷ଵ𝐴, (27) 𝑑𝑑𝑡 𝐵 = 𝜀𝐷ଵ𝐵. (28) 

To find the solution of Eqs. (25), (26), it is appropriate to define 𝐴(𝑇ଵ), 𝐵(𝑇ଵ) as: 

𝐴(𝑇ଵ) = ቆ𝑎(𝑇ଵ)2 ቇ exp൫𝑖𝜓௔(𝑇ଵ)൯, (29) 𝐵(𝑇ଵ) = ቆ𝑏(𝑇ଵ)2 ቇ exp൫𝑖𝜓௕(𝑇ଵ)൯, (30) 
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where the steady-state amplitudes are 𝑎(𝑇ଵ) and 𝑏(𝑇ଵ), and the phases of the polar solutions of 
the essential system and second - order compensator are 𝜓௔(𝑇ଵ), 𝜓௕(𝑇ଵ), respectively. 

Substituting Eqs. (25), (26), (29), and (30) into Eqs. (27), (28) then equating the real and 
imaginary terms. Therefore, we abstract the next equations characterizing phases of the response 
and modulation of the amplitudes: 𝑎ሶ = Γଶ 𝑎 − 2Γସsin(𝜃௔) − Γହ𝑏sin(𝜃௕), (31) 𝜃ሶ௔ = 𝜎ଵ −  Γଵ𝑎ଶ4 − Γଷ − 2Γସ𝑎 cos(𝜃௔) − Γହ𝑏𝑎 cos(𝜃௕), (32) 𝑏ሶ = 𝜂ଵ𝑏 + 𝜂ଷ𝑎sin(𝜃௕), (33) 𝜃ሶ௕ = 𝜎ଶ −  Γଵ𝑎ଶ4 − Γଷ  − 2Γସ𝑎 cos(𝜃௔) − Γହ𝑏𝑎 cos(𝜃௕) + 𝜂ଶ𝑏ଶ4 + 𝜂ଷ𝑎 𝑏 cos(𝜃௕), (34) 

where 𝜃௔ = 𝜎ොଵ𝑇ଵ − 𝜓௔ = 𝜎ଵ𝑡 − 𝜓௔, 𝜃௕ = 𝜎ොଶ𝑇ଵ − 𝜓௔ + 𝜓௕ = 𝜎ଶ𝑡 − 𝜓௔ + 𝜓௕ . 
Eqs. (31)-(34) are called the autonomous amplitude-phase modulating equations. 

3.1.2. Super harmonic resonance (𝑭෡𝟏 = 0, 𝑭෡𝟑 ≠ 0) 

The steady state solution close to the super harmonic resonance case (Ω ≅ 𝜔௦  3⁄ , 𝜔ே ≅ 𝜔௦) 
is conducted resulting from the solution of first order approximation. Then, the detuning 
parameters 𝜎ଷ and 𝜎ସ will be add such that: Ω = 𝜔௦3 + 𝜎ଷ = 𝜔௦3 + 𝜀𝜎ොଷ,   𝜔ே = 𝜔௦ + 𝜎ସ = 𝜔௦ + 𝜀𝜎ොସ. (35) 

By the same steps of the previous section 3.1.1 with letting 𝑐(𝑇ଵ)  and 𝑑(𝑇ଵ)  are the 
steady-state amplitudes, and 𝜓௖(𝑇ଵ), 𝜓ௗ(𝑇ଵ) are phases that arise in the polar solutions of the 
essential system and second-order compensator, respectively. Thus, the autonomous 
amplitude-phase modulating equations are: 𝑐ሶ = Γଶ𝑐 − 2Γ଺sin(𝜃௖) − Γହ𝑑sin(𝜃ௗ), (36) 𝜃ሶ௖ = 3𝜎ଷ −  Γଵ𝑐ଶ4 − Γଷ − 2Γ଺𝑐 cos(𝜃௖) − Γହ𝑑𝑐 cos(𝜃ௗ), (37) 𝑑ሶ = 𝜂ଵ𝑑 + 𝜂ଷ𝑐𝑠in(𝜃ௗ), (38) 𝜃ሶௗ = 𝜎ସ −  Γଵ𝑐ଶ4 − Γଷ − 2Γ଺𝑐  cos(𝜃௖) − Γହ𝑑𝑐  cos(𝜃ௗ) + 𝜂ଶ𝑑ଶ4 + 𝜂ଷ𝑐𝑑 cos(𝜃ௗ), (39) 

where: 𝜃௖ = 3𝜎ොଷ𝑇ଵ − 𝜓௖ = 3𝜎ଷ𝑡 − 𝜓௖,    𝜃ௗ = 𝜎ොସ𝑇ଵ − 𝜓௖ + 𝜓ௗ = 𝜎ସ𝑡 − 𝜓௖ + 𝜓ௗ,   

and Γ଺ = 𝜀Γ෠଺ is constants (see Appendix). 

3.2. Steady-state oscillations 

3.2.1. Primary resonance (𝑭෡𝟏 ≠ 0, 𝑭෡𝟑 = 0) 

To get the FRE, the steady state oscillation equations have the following form: 𝑎ሶ = 𝑏ሶ = 𝜃ሶ௔ = 𝜃ሶ௕ = 0. (40) 

Substituting Eq. (40) into Eqs. (31)-(34), we obtain: 
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Γଶ 𝑎 = 2Γସsin(𝜃௔) + Γହ𝑏𝑠in(𝜃௕), (41) 𝑎𝜎ଵ − Γଵ𝑎ଷ4 − Γଷ𝑎 = 2Γସcos(𝜃௔) + Γହ𝑏cos(𝜃௕), (42) 𝜂ଵ𝑏 = −𝜂ଷ𝑎sin(𝜃௕), (43) (𝜎ଵ − 𝜎ଶ)𝑏 − 𝜂ଶ𝑏ଷ4 = 𝜂ଷ𝑎cos(𝜃௕). (44) 

From these equations, we get: 𝑎ଶ = 𝛼ଵ𝑏଺ + 𝛼ଶ𝑏ସ + 𝛼ଷ𝑏ଶ, (45) (𝑊ଵ𝑏଺ + 𝑊ଶ𝑏ସ + 𝑊ଷ𝑏ଶ)ଶ + (𝑊ସ𝑏ଵଶ + 𝑊ହ𝑏ଵ଴ + 𝑊଺𝑏଼ + 𝑊଻𝑏଺+𝑊଼𝑏ସ + 𝑊ଽ𝑏ଶ)ଶ      = 4Γସଶ𝜂ଷଶ𝑎ଶ, (46) 

where 𝛼ଵ, 𝛼ଶ, 𝛼ଷ, 𝑊௞, (𝑘 = 1, 2, …, 9) are presented in the Appendix. 
Eqs. (48) and (49) are the FRE that are employed to characterize the steady state solutions of 

system. 

3.2.2. Super harmonic resonance (𝑭෡𝟏 = 0, 𝑭෡𝟑 ≠ 0) 

Similarly, to obtain the FRE, the steady state oscillation condition have the following form: 𝑐ሶ = 𝑑ሶ = 𝜃ሶ௖ = 𝜃ሶௗ = 0. (47) 

Then the FRE in this case are: 𝑐ଶ = 𝛼ଵ𝑑଺ + 𝛼ସ𝑑ସ + 𝛼ହ𝑑ଶ, (48) (𝑊ଵ𝑑଺ + 𝑊ଵ଴𝑑ସ + 𝑊ଵଵ𝑑ଶ)ଶ + (𝑊ସ𝑑ଵଶ + 𝑊ଵଶ𝑑ଵ଴ + 𝑊ଵଷ𝑑଼ + 𝑊ଵସ𝑑଺+𝑊ଵହ𝑑ସ + 𝑊ଵ଺𝑑ଶ)ଶ      = 4Γସଶ𝜂ଷଶ𝑐ଶ, (49) 

where 𝛼ସ, 𝛼ହ and 𝑊௡, (𝑛 = 10, 11, …, 16) are presented in the Appendix.  
Eqs. (48) and (49) represent the FRE responsible for characterizing the system steady state 

solutions. 

3.3. Stability analysis of the oscillation 

3.3.1. Primary resonance (𝑭෡𝟏 ≠ 0, 𝑭෡𝟑 = 0) 

To investigate the stability of the nonlinear solution of the achieved fixed points, we must to 
test the behavior of small deviations (i.e., linearization about the oscillatory point) from the stead 
state solutions. Thus, we let that: 𝑎 = 𝑎ଵ + 𝑎௢,    𝜃௔ = 𝜃௔ଵ + 𝜃௔௢,   𝑏 = 𝑏ଵ + 𝑏௢,   𝜃௕ = 𝜃௕ଵ + 𝜃௕௢, (50) 

where 𝑎଴ , 𝜃௔଴ , 𝑏଴  and 𝜃௕଴  are the solutions of Eqs. (34)-(37) and 𝑎ଵ,  𝜃௔ଵ,  𝑏ଵ,  𝜃௕ଵ  are 
perturbations which are considered small in comparison to 𝑎଴, 𝜃௔଴, 𝑏଴ and 𝜃௕଴.  

Substituting from Eq. (50) into Eqs. (31)-(34), and consideration only the linear terms in 𝑎ଵ, 𝜃௔ଵ, 𝑏ଵ and 𝜃௕ଵ, we get the next equations that can be established in the matrix form as: 

⎣⎢⎢⎢
⎡ 𝑎ሶଵ 𝜃ሶ௔ଵ 𝑏ሶଵ𝜃ሶ௕ଵ ⎦⎥⎥⎥

⎤ = ൦𝑟ଵଵ  𝑟ଵଶ  𝑟ଵଷ  𝑟ଵସ𝑟ଶଵ  𝑟ଶଶ  𝑟ଶଷ 𝑟ଶସ𝑟ଷଵ  𝑟ଷଶ  𝑟ଷଷ 𝑟ଷସ𝑟ସଵ  𝑟ସଶ  𝑟ସଷ 𝑟ସସ ൪ ൦ 𝑎ଵ𝜃௔ଵ𝑏ଵ𝜃௕ଵ൪, (51) 
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where the above square matrix is the Jacobian matrix, 𝑟௜௝, 𝑖 = 1, 2, 3, 4 and 𝑗 = 1, 2, 3, 4 are given 
in the Appendix. The eigenvalues of the above equations system are specified as: 𝜆ସ + 𝑟ଵ𝜆ଷ + 𝑟ଶ𝜆ଶ + 𝑟ଷ𝜆 + 𝑟ସ = 0, (52) 

where 𝜆  means eigenvalues of matrix [𝐽] , 𝑟ଵ , 𝑟ଶ , 𝑟ଷ  and 𝑟ସ  are coefficients of Eq. (52). 
Routh-Hurwitz criterion is employed for testing the stability of the equilibrium solutions. The 
periodic solution is said to be stable, if the real part of the eigenvalues is negative; else, it is 
unstable. As indicated by the Routh-Hurwitz criterion, the sufficient and essential conditions for 
all the roots of Eq. (52) to have negative real parts are: 𝑟ଵ  > 0,   𝑟ଵ𝑟ଶ  − 𝑟ଷ > 0,   𝑟ଷ(𝑟ଵ𝑟ଶ  − 𝑟ଷ) − 𝑟ଵଶ𝑟ସ > 0,   𝑟ସ > 0. (53) 

3.3.2. Super harmonic resonance (𝑭෡𝟏 = 0, 𝑭෡𝟑 ≠ 0) 

In addition, to examine the stability of the nonlinear solution of the achieved fixed points, the 
behavior of small deviations must to be tested (i.e., linearization about the oscillatory point) from 
the stead state solutions. Thus, we let that: 𝑐 = 𝑐ଵ + 𝑐௢,   𝜃௖ = 𝜃௖ଵ + 𝜃௖଴,   𝑑 = 𝑑ଵ + 𝑑௢,   𝜃ௗ = 𝜃ௗଵ + 𝜃ௗ௢, (54) 

where 𝑐଴, 𝜃௖଴, 𝑑଴ and 𝜃ௗ଴ are the solutions of Eqs. (36)-(39) and 𝑐ଵ, 𝜃௖ଵ, 𝑑ଵ, 𝜃ௗଵ are perturbations 
which are supposed to be small compared with 𝑐଴, 𝜃௖଴, 𝑑଴ and 𝜃ௗ଴. we acquire the next equations 
that can be established in the matrix form as: 

⎣⎢⎢⎢
⎡ 𝑐ሶଵ𝜃ሶ௖ଵ 𝑑ሶଵ𝜃ሶௗଵ ⎦⎥⎥⎥

⎤ = ൦𝑞ଵଵ  𝑞ଵଶ  𝑞ଵଷ  𝑞ଵସ𝑞ଶଵ  𝑞ଶଶ  𝑞ଶଷ 𝑞ଶସ𝑞ଷଵ  𝑞ଷଶ  𝑞ଷଷ 𝑞ଷସ𝑞ସଵ  𝑞ସଶ  𝑞ସଷ 𝑞ସସ ൪ ൦ 𝑐ଵ𝜃௖ଵ𝑑ଵ𝜃ௗଵ൪, (55) 

where the above square matrix is the Jacobian matrix, 𝑞௜௝, 𝑖 = 1, 2, 3, 4 and 𝑗 = 1, 2, 3, 4 are given 
in the Appendix. The eigenvalues of the above equations system are formed as:  𝜆ସ + 𝑞ଵ𝜆ଷ + 𝑞ଶ𝜆ଶ + 𝑞ଷ𝜆 + 𝑞ସ = 0. (56) 

As stated by the Routh-Hurwitz criterion, the sufficient and essential conditions for all the 
roots of Eq. (56) to possess negative real parts are: 𝑞ଵ  > 0,   𝑞ଵ𝑞ଶ  − 𝑞ଷ > 0,   𝑞ଷ(𝑞ଵ𝑞ଶ  − 𝑞ଷ) − 𝑞ଵଶ𝑞ସ > 0,   𝑞ସ > 0. (57) 

4. Results and discussion 

4.1. Response curves and effects of different parameters   

Using MATLAB 7.0 program, the frequency response Eqs. (45), (46) at primary case and 
Eqs. (48), (49) at super harmonic case have been solved. For the uncontrolled system at 𝑏 = 0, the 
frequency response curve of Duffing oscillator system at primary resonance case are presented as 
displayed in Fig. 11, where the dashed line is an unstable region and the continuous line is a stable 
region. At this figure, we observed that, the steady-state amplitude increases during increasing 𝐹ଵ ,increasing the unstable region and bents to left indicating to nonlinear softening spring and 
jumps phenomenon is occurrence. The difference between the FRC of uncontrolled system at two 
studied resonance cases has been shown in Fig. 12. 
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The phase portrait of the uncontrolled system has been shown in Fig. 13 for case (1) at 𝑏 = 0, 𝜃௕ = 0, the linear equations 𝑎ሶ = 𝑓ଵ(𝑎, 𝜃௔), 𝜃ሶ௔ = 𝑓ଶ(𝑎, 𝜃௔) we obtain the critical points obtained 
from putting 𝑎ሶ = 0, 𝜃ሶ௔ = 0. Then, the previous linear system can be rewritten in the matrix form 𝑉ሶ = 𝐽𝑉 where the Jacobian matrix: 

𝐽 = ൦∂𝑓ଵ∂𝑎       ∂𝑓ଵ∂𝜃∂𝑓ଶ∂𝑎      ∂𝑓ଶ∂𝜃 ൪,   𝑉ሶ = ቂ𝑎ሶ𝜃ሶ ቃ ,    𝑉 = ቂ𝑎𝜃ቃ.  

We explain the phase portrait classifications for values of the eigenvalues 𝜆ଵ , 𝜆ଶ  which 
obtained from det[𝐽 − 𝜆 𝐼] =  0. Because of the eigenvalues take the complex formula  
(𝜆ଵ,ଶ = 𝑎 ± 𝑖𝑏, 𝑎 < 0, 𝑏 > 0), the equilibrium point is classified as the asymptotically stable spiral 
(spirals in) point at (0.06468, 2.77098+6.28319 k), (𝑘 ∈ Integers) as in Ref [25].  

 
Fig. 11. Effect of different values the external excitation force  𝐹ଵ at 𝐹ଷ = 0 of the unabsorbed system when 𝑏 = 0 

 
Fig. 12. Comparison of the FRC of uncontrolled system at  𝐹ଵ = 0.01, 𝐹ଷ = 0 and at 𝐹ଵ = 0, 𝐹ଷ = 0.01 

 
a) 

 
b) 

Fig. 13. Phase plane of the uncontrolled beam when  𝐹ଵ = 0.01, 𝐹ଷ = 0, 𝜎ଵ = 0 similarly or at 𝐹ଵ = 0, 𝐹ଷ = 0.01, 𝜎ଷ = 0  
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Figs. 14 and 15 show that the FRC for the controlled system at the practical case (𝑎 ≠ 0,  𝑏 ≠ 0), where Fig. 14 displays the steady-state amplitude for the essential system (𝑎 against 𝜎ଵ) 
and Fig. 15 displays the steady-state amplitude for NIPPF controller ( 𝑏  against 𝜎ଵ ). The 
comparison of the FRC for the controlled system at two studied cases has been shown in Fig. 15. 
Also, we observed that the FRC at the primary case resonance is stretched to three times of the 
FRC at the super harmonic resonances. The comparison between FRC of an uncontrolled system 
and the system with NIPPF control is presented in Fig. 16. From this figure after using the 
controller, we obtain a good vibration suppression bandwidth compared to before using the 
controller.  

 
Fig. 14. The FRC of  

controlled system (𝑎 against 𝜎ଵ) 

 
Fig. 15. The FRC of  

controlled system (𝑏 against 𝜎ଵ) 
 

 
a) 

 
b) 

Fig. 16. Comparison of the FRC of controlled system at 𝐹ଵ = 0.01, 𝐹ଷ = 0 and at 𝐹ଵ = 0, 𝐹ଷ = 0.01 

 
Fig. 17. Comparison between the FRC of an uncontrolled system and controlled system 

From the above figures, we can discuss the effects of the parameters in one studied resonance 
case, and the second is similar. 

The influences of different parameters on the FRC at the primary case (𝜎ଵ against 𝑎 ) and (𝜎ଵ 
against 𝑏) are given in Figs. 18 and 19. In Fig. 18(a), (b), we show the FRC of the harmonic force 
amplitude 𝐹ଵ for the essential system and the restrainer, respectively. Also, this figure shows that 
the more increasing in the harmonic force amplitude the more bending away of the FRC away 
from the linear curves. This resulted in jump phenomenon and multi-valued regions. The later can 
be seen when the solution isn’t equal zero at 𝜎ଵ = 0. 

The influence of the linear damping 𝜉௦ on the FRC for the essential system, and the absorber 
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is illustrated in Fig. 18(c), (d), respectively. By increasing the values of the linear damping, the 
essential system amplitude and the absorber amplitude decreases, the unstable region decrease 
until all figure becomes stable. 

The effects of the linear natural frequency 𝜔௦ for essential system and controller appears in 
Fig. 18(e), (f). By decreasing the values of the linear natural frequency, the essential system 
amplitude decreases, the stable region increases and the vibration suppression bandwidth for the 
essential system and the controller increases. As a result of that, we knew the small linear natural 
frequency is suitable for the NIPPF controller to reduction the vibration. 

The influence of the weak non-linear stiffness coefficient 𝜅௦ on the FRC of the essential system 
and the absorber are shown in Fig. 18(g), (h), respectively. A softening-type spring nonlinearity 
appeared as a result of the bending to left for the FRC for the essential system and the absorber. 
In Fig. 18(g) when using the small values of 𝜅௦, we find increasing the left peak amplitudes but 
decreasing the right peak amplitudes for the main system. In contrast to that, when using the small 
values of 𝜅௦ , we notice decreasing the left peak amplitudes but increasing the right peak 
amplitudes for the controller. 

Fig. 18(i), (j) displays the effects of the positive scalar feedback gain 𝐾௨ on the FRC of the 
main system and the controller, respectively. Fig. 18(i) displays the increasing of feedback gain 𝐾௨ , the vibration suppression bandwidth become wider and the right peak amplitudes are 
monotonic increasing for the main system amplitude. In Fig. 18(j) when the solution isn’t equal 
zero at 𝜎ଵ = 0 with the increasing of feedback gain 𝐾௨, the controller amplitude will decrease. 

The effects of the integrating gain 𝐾௩ on the FRC of the main system and the controller are 
showed in Fig. 18(k), (l), respectively. This figure appears the decreasing of peak amplitudes for the 
main system and the absorber, the increasing in stable region when increasing of integrating gain.  

Fig. 18(m), (n) indicates that for growing values of the linear damping for the absorber 𝜉ே, the 
steady-state amplitudes for the essential system and the controller are reduced, and the unstable 
region is decreased until total figure become stable. Also, we noticed that at 𝜎ଵ = 0 the amplitude 
of the main system moving away from zero, which is supposed to reach zero at primary resonance 
case Ω = 𝜔௦  that occurs at 𝜎ଵ =  0, therefore, it is preferable to take a small value for the  
variable 𝜉ே.  

Fig. 18(o) illustrates that for large values of the controller gain for the PPF control 𝜆௨, the 
vibration suppression bandwidth is wider and the right peak amplitudes are monotonic increasing 
for the main system amplitude. Fig. 18(p) displays that the absorber peak amplitudes increases. 

The effects of the controller gain of the IRC control 𝜆௩ on the FRC of the essential system and 
the absorber are shown in Fig. 18(q), (r), respectively. By increasing the Controller gain for the 
IRC control, the peak amplitudes of the essential system and the absorber decrease, the unstable 
region decrease until all figure become stable. 

Fig. 18(s), (t) shows the FRC of the essential system and the absorber by varying the value of 
the detuning parameter 𝜎ଶ. Now, we notice that for 𝜎ଵ = –0.2, the steady-state amplitudes of 
essential system and the absorber are minimize when 𝜎ଶ = –0.2. For 𝜎ଵ = 0, the steady-state 
amplitudes of essential system and the absorber are minimize when 𝜎ଶ = 0. Finally, for 𝜎ଵ = 0.2, 
the steady-state amplitudes of essential system and the absorber are minimize when 𝜎ଶ = 0.2. 
Accordingly, the steady-state amplitudes of essential system and absorber are minimize when 𝜎ଵ = 𝜎ଶ i.e. (Ω = 𝜔ே). 

Fig. 19(a), (b) shows that when changing the sign of weak non-linear stiffness coefficient 𝜅௦, 
the amplitude for the essential system 𝑎 and the amplitude of absorber 𝑏 is curved to the right 
denoting a hardening-type spring nonlinearity. 

The influence of the nonlinear term coefficient 𝛿 at 𝐹ଵ = 0.009, 𝐹ଷ = 0 on FRC of the essential 
system and the absorber is presented in Fig. 20. Moreover, varying 𝜎ଶ versus the amplitude for 
the essential system 𝑎  and amplitude of the absorber 𝑏 , are depicted in Figs. 21 and 
22 respectively. Therefore, the steady-state amplitudes of base system and absorber is minimized 
when 𝜎ଶ = 0.  
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Fig. 18. Effective of various parameters on the FRC 
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Fig. 19. The frequency response curve when changing the sign of 𝜅௦ 

 
a) 

 
b) 

Fig. 20. Sensitivity of the frequency response curve when with change its sign at 𝐹ଵ = 0.009, 𝐹ଷ = 0 
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Fig. 21. Effective of 𝜎ଶ on the FRC (𝑎 against 𝜎ଶ) 

 
Fig. 22. Effective of 𝜎ଶ on the FRC (𝑏 against 𝜎ଶ) 

We observed the rapprochement between the analytical and the numerical solution of the FRC 
as in Figs. 23 and 24 in two resonance cases of study, respectively. From these figures, all 
predictions based on evidence of the analytical solution are at extremely valid coincidence with 
the numerical solution. 

 
a) 

 
b) 

Fig. 23. FRC and numerical solutions at 𝐹ଵ = 0.01, 𝐹ଷ = 0 

 
a) 

 
b) 

Fig. 24. FRC and numerical solutions 𝐹ଵ = 0, 𝐹ଷ = 0.01 

4.2. Comparison between time response solutions of the MSPT and the RK-4 methods 

Applying the condition for a steady-state solution, that is, 𝑎ሶ = 𝑏ሶ = 𝜃ሶ௔ = 𝜃ሶ௕ = 0 at the primary 
resonance case or 𝑐ሶ = 𝑑ሶ = 𝜃ሶ௖ = 𝜃ሶௗ = 0 at the super harmonic resonance case, the comparison 
between the numerical solutions of Eqs. (1) and (4) for NIPPF control and the analytical solutions 
given by Eqs. (31)-(34) in case of the primary resonance case or Eqs. (36)-(39) in case of the super 
harmonic resonance has been declared as in Fig. 25. The dashed lines indicate the modulation of 
the amplitudes for the generalized coordinate 𝑢 , 𝑣 . On the other hand, the continuous lines 
represent the time history of vibrations, which acquired numerically as solutions of the original 
equations of the system with NIPPF controller. From this figure, we found that the two studying 
cases of resonance are applicable to each other at the steady state solution. Also, there is a good 
agreement between analytical and numerical solutions. 
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a) 

 
b) 

Fig. 25. Time response where ( ) analytic solution ( ) numerical solution at 𝐹ଵ = 0.01, 𝐹ଷ = 0  
with the primary resonance case Ω = 𝜔௦, 𝜔ே =  𝜔௦ or at 𝐹ଵ = 0, 𝐹ଷ = 0.01   

with the super harmonic resonance case (Ω = 𝜔௦  3⁄ , 𝜔ே = 𝜔௦) 

5. Comparison between the previous works and this work  

In a previous work [8], the authors studied the influence of the use of the NES for passive 
control vibration under bi- frequency harmonic force through considering 𝑥  and 𝑦  the 
(non-dimensional) displacement of the principle non- linear oscillator. They applied MSHBT, to 
find the relevant amplitude modulation equations. Three situations have been investigated for the 
external harmonic excitation: 1:1 resonance, 1:3 resonances, and concurrent 1:1 and 1:3 
resonances. Analytical and numerical solutions, for the principle non- linear oscillator are 
displayed at primary, sub harmonic and primary and sub harmonic resonance. 

Firstly, we adjusted the equation of Ref. [8] by considering only 𝑥  (non-dimensional) 
displacement of the principle non- linear oscillator. We utilized NIPPF absorber was offered as 
the best controller compared to the other controllers to control the vibration system as shown in 
this paper. 

Secondly, we applied the MSPT to get a solution of the studied system and examined the 
stability of this system. 

Finally, we have succeeded in reducing the steady-state amplitude of the main system to 
99.183 % after using NIPPF absorber from its value before absorber. For obtaining the effective 
NIPPF controller, we have found that it is necessary tuning the controller natural frequency to the 
external excitation frequencies (Ω = 𝜔ே). 

The authors declared no potential conflicts of interest with respect to the research, authorship, 
and/or publication of this article. 

6. Conclusions 

In this article, the numerical comparison of the evolution of time between three different types 
of control, which are IRC, PPF and NIPPF controllers on the basic system. We found that the best 
in terms of reducing vibration at a high rate and after a short time is NIPPF controller. Then, a 
Duffing oscillator system connected to NIPPF was introduced with three coupled differential 
equations. These equations have been solved analytically by using MSPT approximation. The 
FRE has been obtained near the primary resonance and super harmonic resonance. After that we 
have investigated the effects of the parameters to present the amplitude performance of the system 
and NIPPF. The stability study is completed to define the stable boundary of the control variables.  
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From this research, the highlighted points can be summarized as following:  
1) By using NIPPF controller, the steady-state amplitude is decreased to 99.18 % from its value 

before control, which proved that this control is the best compared to use of the IRC or PPF 
controllers. 

2) The effectiveness of the absorber 𝐸௔ is about 33.29 when using PPF controller and about 
121.86093 after using NIPPF controller for the main system. 

3) The amplitudes of a Duffing system 𝑎 and the controller 𝑏 are increased when increasing 
the values of 𝐹ଵ and 𝜆௨.  

4) At decreasing the value of, 𝜆௩  and 𝐾௩ , the amplitude of the main structure 𝑎  and the 
controller 𝑏 are increased.  

5) For increasing the values of 𝜉௦, 𝐾௨ and 𝜎ଶ, the amplitude of the main structure 𝑎 decreased 
and the amplitude of the controller increased. 

6) The FRC of Duffing system and the controller are curved to the right denoting a 
hardening-type spring nonlinearity when changing the sign value of 𝜅௦. 

7) The best performance for the amplitude vibration reduction which reach to zero when  𝜎ଶ = 𝜎ଵ (Ω = 𝜔ே) and similarly when 𝜎ସ = 𝜎ଷ (Ω = 𝜔ே 3⁄ ).  
8) There are good agreements when make a comparison between the approximate and the 

numerical solutions at time history and the FRC as presented in Figs. 23, 24 and 25 at two cases 
of study, respectively. 
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Appendix 

𝐸ଵ = 𝑘෠௨𝐵(𝜔௦ଶ − 𝜔ேଶ ),   𝐸ଶ = 𝜅̂௦𝐴ଷ8𝜔௦ଶ ,   𝐸ଷ = 𝐹෠ଵ2(𝜔௦ଶ − Ωଶ),    𝐸ସ = 𝑘෠௩𝐶(𝜔௦ଶ + 𝜎௩ଶ),     𝐸ହ = 𝐹෠ଷ2 (𝜔௦ଶ − 9Ωଶ),  

𝐻ଵ = 𝛿መ𝐵ଷ8𝜔ேଶ ,   𝐻ଶ =  𝜆መ௨𝐴(𝜔ேଶ − 𝜔௦ଶ),    𝑀ଵ = 𝜆௩ (𝜎௩ − 3𝑖𝜔௦)𝐸ଶ(𝜎௩ଶ + 9𝜔௦ଶ) ,   𝑀ଶ = −𝜆௩ (𝜎௩ −  𝑖𝜔௦)ଶ𝐷ଵ𝐴(𝜎௩ଶ + 𝜔௦ଶ)ଶ ,   𝑀ଷ = 𝜆௩ (𝜎௩ − 𝑖Ω)𝐸ଷ(𝜎௩ଶ + Ωଶ) , 𝑀ସ = 𝜆௩ (𝜎௩ −  𝑖𝜔ே)𝐸ଵ(𝜎௩ଶ + 𝜔ேଶ ) ,   𝑀ହ = 𝜆௩ (𝜎௩ − 3𝑖Ω)𝐸ହ(𝜎௩ଶ + 9Ωଶ) ,  

Γ෠ଵ = 3𝜅̂௦2𝜔௦ ,   Γ෠ଶ = − ቆ𝜉መ௦𝜔௦ + 𝑘෠௩𝜆௩ 2(𝜎௩ଶ + 𝜔௦ଶ)ቇ,   Γ෠ଷ = −𝑘෠௩𝜆௩𝜎௩2𝜔௦(𝜎௩ଶ + 𝜔௦ଶ),    Γ෠ସ = −𝐹෠ଵ4𝜔௦ ,      Γ෠ହ = −𝑘෠௨2𝜔௦ ,    Γ෠଺ = −𝐹෠ଷ4𝜔௦,  

𝜂̂ଵ = −𝜉መே𝜔ே,   𝜂̂ଶ = 3𝛿መ2𝜔ே ,   𝜂̂ଷ = −𝜆መ௨2𝜔ே,     𝛼ଵ = 𝜂ଶଶ16𝜂ଷଶ ,   𝛼ଶ = − 𝜂ଶ(𝜎ଵ − 𝜎ଶ) 2 𝜂ଷଶ ,   𝛼ଷ = 𝜂ଵଶ + (𝜎ଵ − 𝜎ଶ)ଶ 𝜂ଷଶ ,  
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𝑊ଵ = Γଶ𝜂ଷ𝛼ଵ,   𝑊ଶ = Γଶ𝜂ଷ𝛼ଶ,   𝑊ଷ = Γଶ𝜂ଷ𝛼ଷ + Γହ𝜂ଵ,    𝑊ସ = − Γଵ𝜂ଷ𝛼ଵଶ4 ,     𝑊ହ = − Γଵ𝜂ଷ𝛼ଵ 𝛼ଶ2 ,    𝑊଺ = − Γଵ𝜂ଷ(2𝛼ଵ𝛼ଷ + 𝛼ଶଶ)4 ,    𝑊଻ = (𝜎ଵ − Γଷ)𝜂ଷ𝛼ଵ −  Γଵ𝜂ଷ𝛼ଶ𝛼ଷ2 , 𝑊଼ = (𝜎ଵ − Γଷ)𝜂ଷ𝛼ଶ −  Γଵ𝜂ଷ𝛼ଷଷ4 + Γହ𝜂ଶ4 ,   𝑊ଽ = (𝜎ଵ  − Γଷ)𝜂ଷ𝛼ଷ − (𝜎ଵ − 𝜎ଶ)Γହ, 
 

𝛼ସ = − 𝜂ଶ(3𝜎ଷ − 𝜎ସ) 2𝜂ଷଶ ,   𝛼ହ = 𝜂ଵଶ + (3𝜎ଷ − 𝜎ସ)ଶ 𝜂ଷଶ ,  𝑊ଵ଴ = Γଶ𝜂ଷ𝛼ସ,   𝑊ଵଵ = Γଶ𝜂ଷ𝛼ହ + Γହ𝜂ଵ,   𝑊ଵଶ = − Γଵ𝜂ଷ𝛼ଵ𝛼ସ2 , 𝑊ଵଷ = − Γଵ𝜂ଷ(2𝛼ଵ𝛼ହ + 𝛼ସଶ)4 ,   𝑊ଵସ = (3𝜎ଷ − Γଷ) 𝜂ଷ𝛼ଵ −  Γଵ𝜂ଷ𝛼ସ𝛼ହ2 ,  

𝑊ଵହ = (3𝜎ଷ − Γଷ)𝜂ଷ𝛼ସ −  Γଵ𝜂ଷ𝛼ହଷ4 + Γହ𝜂ଶ4 ,  𝑊ଵ଺ = (3𝜎ଷ − Γଷ) 𝜂ଷ𝛼ହ − (3𝜎ଷ  − 𝜎ସ)Γହ,  𝑟ଵଵ = Γଶ,   𝑟ଵଶ = −2Γସcos(𝜃௔଴) ,    𝑟ଵଷ = −Γହsin(𝜃௕଴),   𝑟ଵସ = −Γହ𝑏଴cos(𝜃௕଴),  𝑟ଶଵ = 𝜎ଵ𝑎଴ − 3 4 Γଵ𝑎଴  −   Γଷ𝑎଴ ,   𝑟ଶଶ =  2Γସ𝑎଴ sin(𝜃௔଴),    𝑟ଶଷ = −Γହ𝑎଴ cos(𝜃௕଴),      𝑟ଶସ = Γହ𝑏଴𝑎଴ sin(𝜃௕଴),  

𝑟ଷଵ = 𝜂ଷsin(𝜃௕଴),   𝑟ଷଶ = 0,   𝑟ଷଷ = 𝜂ଵ,   𝑟ଷସ = 𝜂ଷ𝑎଴cos(𝜃௕଴),  𝑟ସଵ = 𝜎ଶ𝑎଴ − 34 Γଵ𝑎଴  −  Γଷ𝑎଴ + 𝜂ଶ4 𝑎଴ 𝑏଴ଶ + 2𝜂ଷ𝑏଴ cos(𝜃௕଴),   𝑟ସଶ = 𝑟ଶଶ =  2Γସ𝑎଴ sin(𝜃௔଴),  𝑟ସଷ = 𝜎ଶ𝑏଴  − 𝑎଴ଶ4 𝑏଴ Γଵ −  Γଷ𝑏଴ − 2Γସ𝑏଴ 𝑎଴ cos(𝜃௔଴) − 2Γହ𝑎଴ cos(𝜃௕଴) +  3 4  𝑏଴𝜂ଶ,  𝑟ସସ = ൬𝑏଴Γହ 𝑎଴ − 𝜂ଷ𝑎଴𝑏଴ ൰ sin(𝜃௕଴),  𝑞ଵଵ = Γଶ,   𝑞ଵଶ = −2Γ଺cos(𝜃௖଴),   𝑞ଵଷ = −Γହsin(𝜃ௗ଴),   𝑞ଵସ = −Γହ𝑑଴cos(𝜃ௗ଴),  𝑞ଶଵ = 3 𝜎ଷ𝑐଴ − 3 4 Γଵ  𝑐଴ −   Γଷ𝑐଴ ,   𝑞ଶଶ =  2 Γ଺𝑐଴ sin(𝜃௖଴),    𝑞ଶଷ = −Γହ𝑐଴ cos(𝜃ௗ଴),     𝑞ଶସ = Γହ𝑑଴𝑐଴ sin(𝜃ௗ଴),  

𝑞ଷଵ = 𝜂ଷsin(𝜃ௗ଴),   𝑞ଷଶ = 0,   𝑞ଷଷ = 𝜂ଵ,   𝑞ଷସ = 𝜂ଷ𝑐଴cos(𝜃ௗ଴) (58) 𝑞ସଵ =  𝜎ସ𝑐଴ − 34 Γଵ𝑐଴  −  Γଷ𝑐଴ + 𝜂ଶ4 𝑐଴ 𝑑଴ଶ + 2 𝜂ଷ𝑑଴ cos(𝜃ௗ଴),   𝑞ସଶ = 𝑞ଶଶ =  2Γ଺𝑐଴ sin(𝜃௖଴), (59) 𝑞ସଷ = 𝜎ସ𝑑଴  − 𝑐଴ଶ4𝑑଴ Γଵ −  Γଷ𝑑଴ − 2Γ଺𝑑଴ 𝑐଴ cos(𝜃௖଴) − 2Γହ𝑐଴ cos(𝜃ௗ଴) +  3 4  𝑑଴𝜂ଶ, (60) 𝑞ସସ = ൬𝑑଴Γହ 𝑐଴ − 𝜂ଷ𝑐଴𝑑଴ ൰ sin(𝜃ௗ଴). (61) 
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