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Abstract. We discuss entropy characteristics used in various research techniques for investigation 
of complex dynamical systems including symbolic ones. The dynamics of a system may be studied 
by analyzing the phase portrait of a system obtained as a digital image. Symbolic dynamics 
methods allow combining entropy of a given dynamical system with the entropy characteristics 
of its phase portrait. We apply methods of image analysis based on symbolic dynamics, Rényi 
entropy, fractal and multifractal characteristics to analyze high resolution images having a 
complex structure. We also describe the results of applications of described methods to images of 
biomedical preparations. 
Keywords: dynamical systems, phase portrait, symbolic dynamics, topological entropy, 
multifractal spectrum, weighted entropy, image analysis. 

1. Introduction 

Scientific investigations of various processes are often based on observations. P. Bak in [1] 
noted, that observations are statistical in nature, and we use some distribution functions for 
measurable values to formalize them. It leads to forming informational (statistical) approach to 
study the behavior of a complex system, which is described by models processes we observe using 
the characteristics based on distribution functions. 

In 1850, R. Clausius introduced the concept of entropy of an isolated system in 
thermodynamics as a measure of the change of system state under a change of temperature. The 
term “entropy” denoted the energy that does not perform work, and in any isolated system it can 
only increase. 

L. Boltzmann [2] introduced the statistical approach in thermodynamics – he proposed to 
describe a system state by using its microstates. The Boltzmann entropy – statistical entropy for 
equiprobable distribution of a system over 𝑁 states: 𝐻஻ = ln 𝑁. (1)

For non-equiprobable distributions, the ensembles of microcanonical subsystems are used so 
that all its 𝑁௜  states are equiprobable with a probability 𝑝௜  for every 𝑖 -th subsystem. The 
Boltzmann entropy (1) of 𝑖-th subsystem is 𝐻஻௜ = − ln 𝑝௜. The averaging of ensembles results in 
the expression for Gibbs-Shannon entropy: 

𝐻 = − ෍ 𝑝௜ ln 𝑝௜ே
௜ୀଵ . (2)

The development of informational approach to the description of complex systems led to the 
creation of other forms of informational entropies, in particular Rényi entropies — a set of 
functions depending on a real parameter 𝑞: 
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𝐻௤  = 11 − 𝑞 ln ෍ 𝑝௜௤௜ . (3)

These functions are important characteristics of a complex system, in particular in image 
analysis. Rényi spectra are calculated by using Renyi entropies. The Gibbs-Shannon entropy 
Eq. (2) is the Rényi entropy Eq. (3) for 𝑞 = 1. 

Then the term of “entropy” began to take on more general meaning not related directly to 
thermodynamics. In 1948, C. Shannon invented entropy as a term in the information theory, A. 
Kolmogorov in 1958 created the concept of “dynamical entropy” in the theory of dynamical 
systems. Now, one can find the term entropy in mathematics, physics, and computer science. In 
dynamical systems, the entropy characterizes the system complexity. Topological entropy 
describes the complexity of orbit structure. Moreover, topologically conjugated systems have the 
same entropy, thus they have the characteristics of a class of systems. To describe the statistical 
behavior of orbits, the metric entropy of measure-preserving transforms, which is a statistical 
analog of topological entropy, is introduced. A comprehensive review on entropy in dynamical 
systems and the relation between them are given in [3, 4]. 

Symbolic dynamical systems form one of fundamentally important classes of dynamical 
systems. They are obtained in the process of coding the smooth dynamical systems. The coding 
means that we construct a finite partition of a phase space and assign a symbol from a finite 
alphabet to any element of the partition. Then we code a trajectory with a symbol sequence by 
writing one-by-one codes of partition elements which the trajectory visits. We obtain a space of 
symbol sequences corresponding to an approximation of the set of system trajectories, and define 
the shift map on the space so that one step along the trajectory is the shift of the corresponding 
sequence on one symbol. Symbolic dynamical systems having a presentation by the oriented graph 
are topological Markov chains, which are very important in different applications. 

Practical application of symbolic dynamical systems was made possible due to elaboration of 
applied symbolic dynamics methods. Trajectory coding for description of global behavior of 
geodesic on the surfaces with negative curvature was applied in 1898 by J. Hadamar [5]. The 
papers of H. Morse and G. Hedlung [6, 7] and R. Bowen [8] made an important contribution to 
the progress of the method. V. Alekseev [9] applied it for celestial mechanics problems. In 1983 
G. Osipenko elaborated the method of symbolic image, in which the system dynamics is 
represented by an oriented graph constructed by some rules. Actually, symbolic image graph is a 
topological Markov chain, where symbol sequences correspond to paths on the graph. By applying 
the technique of adaptive partition subdivision, one can construct a sequence of symbolic images 
that is an approximation of the dynamics of the initial system. This method was successfully 
applied to the approximation of invariant sets, Morse spectrum and invariant measures [10]. 

To study the dynamics of a system, one may analyze its phase portraits in various points in 
time. The operations with symbolic sequences naturally result in the calculation of a statistical 
characteristic of the system — relative frequency of a symbol occurrence in the sequence, which 
corresponds to the frequency at which a trajectory of the initial system visits a partition element. 
When considering phase portraits as digital images, we may interpret the set of frequencies as a 
measure distribution. Basing on this distribution, we may calculate multifractal spectra, Rényi 
spectra and divergences. These characteristics use Rényi entropies. 

One can simulate the dynamics of diffusion processes illustrated by their phase portraits by 
constructing an oriented graph and the Markov chain on it. The flow is defined by pixel intensities. 
Then the stationary flow (state) of the chain is calculated, which maximizes so called weighted 
entropy. This value interpreted as a “distance” between an initial state, and the stationary one may 
be used as a classifying sign in image analysis. These methods appear to have a considerable 
promise for high resolution images with complex structure. 

In this work, we consider the application of analysis methods of dynamical systems including 
image analysis ones, which are based on combining the symbolic dynamics and information 
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approach. Various types of entropies serve as connecting links between different problems and 
methods. The described methods were used to analyze and classify digital images of biomedical 
preparations having a complex structure. 

2. Calculation and estimation of topological entropy 

Topological entropy may be defined by different ways, for example through minimal 
coverings or separated sets [11]. For simple system having complex structure of orbits, one may 
calculate the growth rate of periodic orbits. Examples of such systems are linear extending maps, 
and hyperbolic automorphism of torus. For them, the topological entropy coincides with the 
growth rate, which may be easily calculated. But for the most part of systems, we need to use 
methods of estimations. In 1993, S. Newhouse and T. Pignataro [12] proposed a method to 
estimate the topological entropy of a smooth dynamical system by calculating the logarithmic 
growth rates of suitably chosen curves in the system. The method may be successfully applied to 
study complex systems with strange attractors. In [13], the authors described the algorithm for 
obtaining rigorous lower bound of the topological entropy of planar diffeomorphisms. They used 
a method of approximation of invariant manifolds of hyperbolic periodic points, and applied it to 
estimate entropy for Henon and Ikeda maps. An effective algorithm was proposed in [14], where 
the authors calculated lower bound of the topological entropy and used it to identify regions of 
high mixing. 

Topological entropy with relative ease may be obtained for a topological Markov chain: we 
should calculate the module of maximal eigenvalue of the adjacency matrix for the corresponding 
graph. In this connection, we may estimate topological entropy of a system by using the symbolic 
image method: in accordance with a given partition to construct the oriented graph (which is a 
topological Markov chain) and calculate eigenvalues of the adjacency matrix. In order to simplify 
the problem, one may perform this procedure for each component of strong connectivity of the 
graph. 

The technique for estimation of topological entropy for the spaces of symbol sequences (“edge 
space” and “vertex space”) on oriented graphs was proposed in [15]. Basing on this approach, G. 
Osipenko in [10] designed and implemented algorithms for estimation of the entropy of symbolic 
image and obtained the estimation of topological entropy of Henon and logistic maps. 

3. Metric entropy estimation 

The concept of metric entropy of a map is introduced for maps preserving a measure. It means 
that we should deal with invariant measures of a map. The Krilov-Bogolyubov theorem [4] 
guarantees that any continuous map on a compact space has an invariant measure. One may 
construct an approximation to the invariant measure using the symbolic image method. In this 
case, we should calculate stationary flow on the graph of symbolic image. In doing so, we obtain 
a stationary distribution for a Markov chain. Then metric entropy of the distribution is a lower 
bound for the topological entropy of symbolic image. The algorithms of the construction of 
stationary flow were described and implemented in [16, 17], where the estimations for topological 
entropy of delay map, double logistic map, Henon and Ikeda map were obtained. 

In this work, we also use the idea of construction of stationary flow on a graph constructed for 
a digital image by a specific way. It is known that stationary flow gives maximum to the function 
dealing with initial and stationary distributions (so called weighted entropy). For digital images 
weighted entropy may be considered as a classifying sign. 
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4. Entropies as goal functions in variational problems  

The Shannon and Rényi entropies are often used as goal functions when finding distributions 
that maximize (minimize) the function for some given restrictions. We consider one problem 
which is related to multifractal spectrum calculation. 

Let a distribution {𝑝௜} with ∑ 𝑝௜ = 1ே௜ୀଵ  be given. Find the distribution 𝜇௜  maximizing the 
Shannon entropy − ∑ 𝜇௜ ln 𝜇௜ on the conditions ∑ 𝜇௜ = 1ே௜ୀଵ , and the constraints on ln 𝑝௜ averaged 
over 𝜇௜, i.e. ∑ 𝜇௜ே௜ୀଵ ln 𝑝௜ = 𝑘, where 𝑘 is a real constant. 

Consider the Lagrange function with parameters 𝑞 and 𝜆: 𝜑 = − ෍ 𝜇௜ ln 𝜇௜ + 𝑞 ෍ 𝜇௜ே
௜ୀଵ ln 𝑝௜ + 𝜆 ෍ 𝜇௜ே

௜ୀଵ . (4)

Equaling partial derivatives of 𝜑 (given by Eq. (4)) by 𝜇௜ to zero, we obtain the system: − ln 𝜇௜ − 1 + 𝑞 ln 𝑝௜ + 𝜆 = 0. (5)

It follows that: 𝜇௜ = 𝑝௜௤𝑒ఒିଵ. (6)

Combining Eq. (5), we obtain 1 = 𝑒ఒିଵ ∑ 𝑝௜௤ே௜ୀଵ  , that taking into account Eq. (6) leads to 
excluding 𝜆: 

𝜇௜ = 𝑝௜௤∑ 𝑝௜௤. (7)

For given conditions on average values (𝑘), one can calculate 𝑞 and solve the optimization 
problem. But it is significant that Eq. (7) determines a set of solutions depending on the parameter 𝑞. In fact, it is a transform of the initial measure {𝑝௜ } (so called direct multifractal transform). It 
is easy to see that for 𝑞 ≠ 0  transforms Eq. (7) forms a group, namely if we denote  𝑓௤(𝑝) = 𝑝௜௤ ∑ 𝑝௜௤ൗ , then 𝑓௤భ(𝑓௤మ) = 𝑓௤భ௤మ , 𝑓௤(𝐼𝑑) = 𝑓௤  and 𝑓௤(𝑓ଵ/௤) = 𝐼𝑑 , where 𝐼𝑑 = 𝑓ଵ.  For  𝑞 = 1  we have the fixed point. The set of probabilistic measures falls into non-intersecting 
transitivity classes. 

5. Entropy in analysis of digital images  

5.1. Weighted entropy  

Digital images illustrating diffusion processes may be analyzed by the construction of an 
oriented graph, which helps to describe the process dynamics. For this purpose, the image is 
considered as a pixel lattice, number of vertex in the graph is equal to the number of pixels. The 
measure 𝑝௜ of a vertex (pixel) 𝑖 is assumed to be equal to the pixel intensity. Then we construct 
edges from every vertex to nearest neighbors (4 or 8) and for every edge (𝑖, 𝑗), its measure 𝑝௜௝is 
equal to 𝑝௜ divided into a number of neighbors. After standartizing the distribution 𝑝௜௝, we obtain 
a Markov chain on the graph having the property: vertex measure is equal to the sum of measures 
of outcoming edges. For such a chain, one can construct a stationary distribution (stationary flow) 𝑢௜௝, namely: the sums of measures of incoming and outcoming edges are equal in every vertex. 
As it was shown in [18], stationary distribution maximizes so-called weighted entropy: 



152. ENTROPIES IN INVESTIGATION OF DYNAMICAL SYSTEMS. THE APPLICATION TO DIGITAL IMAGE ANALYSIS.  
NATALIA AMPILOVA, IGOR SOLOVIEV 

 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635, KAUNAS, LITHUANIA 111 

𝑓(𝑢) = − ෍ 𝑢௜௝ ln 𝑝௜௝𝑢௜௝௜௝ . (8)

According to the maximum entropy principle, it means that the system goes from an initial 
state into the state with the maximal entropy – stationary one. 

The stationary state of the Markov chain describes a stable (stationary) state of the system 
generating the considered image. The existence of a stationary flow constructed on the graph 
related to this image may be interpreted as the existence of an invariant set of the system. 

Problems from different subject areas may lead to the construction of а stationary flow on a 
graph. This method is applied in linear programming (transport tasks), dynamical systems 
(construction of an invariant measure on the graph of symbolic image). It should be noted that the 
solution exists if there are cycles on the graph. 

In [19], a model based on the calculation of a stationary flow on the graph was considered to 
obtain a classification sign – weighted entropy – for a digital image. The implementation of the 
algorithmand results of the classification of pharmacological 𝐴𝑔 solution images is given in [20]. 
In [21], this method and its optimization based on the choice of a cell instead of a pixel were 
successfully applied to some classes of biological preparations images, and in [22] methods of 
optimization using parallel calculation and another data representation were implemented. These 
methods allowed reducing the run time 3-4 times. 

5.2. Weighted entropy calculation 

Weighted entropy is calculated for 4 classes of biomedical preparation images, and each class 
contains 12 images. The images were obtained by microscope AxioCam MRc5 of the company 
Carl Zeiss Microimaging GmbH. All the images were made with 200-fold zoom, represented in 
RGB and with the size of 2584×1936 pixels. 

A preliminary classification was performed by an expert. All the images are represented both 
in grayscale and HSV palette (component wise). 

Fig. 1 shows images from 4 classes of liver tissue: plethora, dystrophy, cirrhosis, metastasis. 

 
a) Plethora 

 
b) Dystrophy 

 
c) Cirrhosis 

 
d) Metastasis 

Fig. 1. Images of liver tissue with plethora, dystrophy, cirrhosis and metastasis 
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In Table 1 values of weighted entropy for images in Fig. 1 are given. Experiments show that 
the values of weighted entropy are different in H component. 

Table 1. Weighted entropy values in several palette components 
Image Grayscale H S V 

Plethora 0.00001861 0.13403192 0.00002513 0.00001609 
Dystrophy 0.00001713 0.12524680 0.00002104 0.00001625 
Cirrhosis 0.00001607 0.08331278 0.00002021 0.00001627 

Metastasis 0.00001676 0.09522162 0.00003832 0.00001648 

5.3. Fractal dimensions and entropy 

There is a connection between Shannon entropy and fractal dimensions. The first example is 
the Egglestone theorem concerning the Hausdorff dimension of a set of numbers in the unit 
interval with given distribution of relative frequencies of digits. It was described in [23]. The 
author gave the more common definition of Hausdorff’s dimension which was used in problems 
relating to 𝑟-adic decompositions. He considered a probabilistic measure on Borel sets on unit 
interval. The dimension of a set of numbers in the interval with a given distribution of relative 
frequencies of digits was expressed through the entropy of the probabilistic vector and coincided 
with the Hausdorff dimension. 

The presentation of real number 𝜔 was considered in unit interval in the numbering system 
with base 𝑟 > 1, namely: 

𝜔 = ෍ 𝑥ே(𝜔)𝑟ିேஶ
ேୀଵ , (9)

where coefficients 𝑥ே(𝜔) take values from 0 to 𝑟 − 1. 
The number of occurrences of symbol 𝑖  is denoted in the sequence 𝑥ଵ(𝜔), … , 𝑥ே(𝜔)  by 𝑃௜(𝜔, 𝑁) . Note that the sequence {𝑃௜(𝜔, 𝑁)}  has the subadditivity property:  𝑃௠ା௡(𝜔, 𝑁) ≤ 𝑃௠(𝜔, 𝑁) + 𝑃௡(𝜔, 𝑁). Hence by the Pólya lemma there is: 

𝑝௜(𝜔) = limே→ஶ 𝑃௜(𝜔, 𝑁)𝑁 . (10)

Thus, to any sequence Eq. (9), one can match the probabilistic vector formed by relative 
frequencies of occurrences of symbol 𝑖 in the sequence. Denote the set of numbers 𝜔 for which 𝑝௜(𝜔)  satisfy Eq. (10) by а 𝑀(𝑝଴, … 𝑝௥ିଵ).  Then the Hausdorff dimension of the set 𝑀(𝑝଴, … , 𝑝௥ିଵ) may be calculated as: 

dim 𝑀 = − ∑ 𝑝௜ ln 𝑝௜௥ିଵ௜ୀ଴ln 𝑟 . (11)

It should be noted that in [24], H. Furstenberg obtained a more common result using symbolic 
dynamics. Namely, he considered a set of one-sided r-ary sequences Σ௠ା  and a closed subset 𝑋 
which is 𝜎  invariant, where 𝜎  is shift map. Let 𝜑: Σ௥ା   → [0,1] , where 𝜑({𝜔௡}) = ∑ ఠ೙௥೙ஶ௡ୀଵ ,  𝜔௡ = 𝑥௡(𝜔). In other words, by this way, we can match a number from unit interval to a symbol 
sequence over 𝑚-symbol alphabet. Let also 𝑀 = 𝜑(𝑋). Then the Hausdorff dimension of the set 𝑀 is given by the formula dim 𝑀 = ௛(ఙ|௑)୪୭୥ ௥ , where ℎ is the topological entropy of 𝜎. 

Hence it can be seen that taking into account the map 𝜑, a record of a number in a numbering 
system with the base 𝑟 may be interpreted as the image of a symbolic sequence which presents the 
coding of a dynamical system trajectory related to a chosen partition. Note that the set of numbers 
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𝜔  in unit interval with a given distribution 𝑝௜(𝜔) may be thought as a set of encodings for 
trajectories of a dynamical system, and the Hausdorff’s dimension of this set is calculated by 
Eq. (11). 

5.4. Multifractal spectrum and entropy 

Another example of the connection between fractal dimensions and entropy is the information 
dimension, which is a member of Rényi dimensions set. This dimension may be interpreted as the 
dimension of the measure-theoretic support of a particular measure (in other words, the 
complement of the support has zero Lebesgue measure). 

Digital images with complex texture often have fractal or multifractal structures. Fractal sets 
may be described by a numerical characteristic called as fractal dimension, which reflects the main 
property of such sets – self-similarity. The last one may be strict (as for Cantor set) and statistical 
(as for majority of nature objects). Multifractal sets may be interpreted as unions of several fractal 
subsets. Each of subsets has its own fractal dimension, and they are arranged by a very complex 
way. Fractal dimensions of these subsets form multifractal spectrum. In the fractal analysis, we 
use a main assumption based on experimental data: if we divide an image on cells with a given 
size and calculate a measure of cells then there is power dependence between the measure and 
size. This exponent is an approximate value of the fractal dimension of the set. 

Let us to give the number of cell of a partitions (𝑁) with size 𝑙 for a set 𝑀. In [25], the authors 
considered a calculation method for the dimension of a measure {𝑝௜} support 𝑀 (in other words, 
the dimension of the set of trajectories on the phase portrait which corresponds to the given 
distribution) as: 

dim 𝑀 = − limே→ஶ ∑ 𝑝௜ ln 𝑝௜ே௜ୀଵln 𝑁 . (12)

Taking into account the dependence measure {𝑝௜} on the cell size, and 𝑙~ 1 𝑁⁄ , we obtain Eq. 
(12) rewritten as follows: 

dim 𝑀 = lim௟→଴ ∑ 𝑝௜(𝑙) ln 𝑝௜(𝑙)ே௜ୀଵ ln 𝑙  . (13)

The last one is the information dimension formula. 
The authors also proposed to calculate multifractal spectrum by obtaining a sequence of 

measures from a given initial normalized measure distribution by applying direct multifractal 
transform, and then calculate information dimensions of supports of measures from the sequence 
by Eq. (13). 

Later on we assume that 𝑝௜ ≈ 𝑙ఈ೔ , hence 𝛼௜ ≈ ln𝑝௜(௟) ⁄ ln𝑙 . We also assume that for the 
generalized statistical sum 𝜑(𝑞) = ∑ 𝑝௜௤(𝑙)ே௜ୀଵ  (𝑞 is a real number), there is the function 𝜏(𝑞) such 
as 𝜑(𝑞) ≈ 𝑙ఛ(௤) . For an initial distribution {𝑝௜}  we obtain the sequence of measures  𝜇(𝑞, 𝑙) = {𝜇௜(𝑞, 𝑙)} by applying Eq. (7): 𝜇௜(௤,௟) = ௣೔೜(೗)∑ ௣೔೜(೗)೔ಿసభ . For each measure 𝜇(𝑞, 𝑙), we calculate 

the information dimension of its support by Eq. (13) and obtain a set 𝑓(𝑞) – dimensions of 
measures 𝜇(𝑞, 𝑙) supports: 

𝑓(𝑞) = lim௟→଴ ∑ 𝜇௜(𝑞, 𝑙) ln 𝜇௜(𝑞, 𝑙)ே௜ୀଵ ln 𝑙 . (14)

Following the method mentioned above, we also calculate averaging of exponents 𝑝௜(𝑙) over 
the measure 𝜇(𝑞, 𝑙) and then the limit 𝛼(𝑞) of these averaging: 
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𝛼(𝑞) = lim௟→଴ ∑ ln 𝑝௜(𝑙)𝜇௜(𝑞, 𝑙)ே௜ୀଵ ln 𝑙 . (15)

So, Eqs. (14) and (15) give the q-parametric presentation of multifractal spectrum 𝑓(𝑞) and 
averaging exponents 𝛼(𝑞).To obtain the dependence 𝑓(𝛼), we should exclude 𝑞. Excluding 𝑞 one 
may obtain the dependence 𝑓(𝛼). 

It is interesting to note that substituting 𝜇௜(𝑞, 𝑙) = 𝑝௜௤(𝑙) ∑ 𝑝௜௤(𝑙)ே௜ୀଵൗ  in Eq. (14) we obtain: 

𝑓(𝑞) = lim௟→଴ ∑ 𝜇௜(𝑞, 𝑙) ln 𝜇௜(𝑞, 𝑙)ே௜ୀଵ ln 𝑙 = lim௟→଴
∑ 𝜇௜(𝑞, 𝑙) ln 𝑝௜௤(𝑙)∑ 𝑝௝௤(𝑙)௝ே௜ୀଵ ln 𝑙        = 𝑞 lim௟→଴ ∑ 𝜇௜(𝑞, 𝑙) ln 𝑝௜(𝑙)ே௜ୀଵ ln 𝑙 − lim௟→଴ ∑ 𝜇௜(𝑞, 𝑙) ln 𝜑(𝑞, 𝑙)ே௜ୀଵ ln 𝑙        = 𝑞𝛼(𝑞) − lim௟→଴ ln 𝜑(𝑞)ln 𝑙 = 𝑞𝛼(𝑞) − 𝜏(𝑞). 

Besides that: 

𝑑𝜏(𝑞)𝑑𝑞 = lim௟→଴ 1ln 𝑙 ∑ 𝑝௜௞(𝑙) ln 𝑝௜(𝑙)௜ ∑ 𝑝௝௞௝ (𝑙) = lim௟→଴
∑ 𝑝௜௤(𝑙)∑ 𝑝௝௤௝ (𝑙) ln 𝑝௜(𝑙)௜ ln 𝑙       = lim௟→଴ ∑ 𝜇௜(𝑞, 𝑙) ln 𝑝௜(𝑙)௜ ln 𝑙 = 𝛼(𝑞). 

In other words, on the sequence of measures obtained from an initial measure by direct 
multifractal transform, the formula for the Legendre transform is made. 

This method was applied in [26] for calculation of Rényi spectrum. Namely, by obtaining 𝛼(𝑞) 
and 𝑓(𝑞)  and using the Legendre transform, we have 𝜏(𝑞) = 𝑞𝛼(𝑞) − 𝑓(𝑞)  and  𝐷௤ = 𝜏(𝑞)/𝑞 − 1, where 𝐷௤ is 𝑞-order Rényi dimension. 

We applied the described method in [27] to classify biomedical preparation images. 
Example: Now the example of calculation of 𝑓(𝑞) and 𝛼(𝑞) is considered for images of a 

healthy bone tissue and a tissue with osteoporosis. Images have the size [350, 279]. Calculations 
were performed for a grayscale palette, the parameter 𝑘 changed within the interval [–7, 3] with 
the step of 0.5. The cell measure is calculated as the relation of pixel intensities in the cell to the 
sum of pixel intensities of the image. To calculate 𝑓(𝑞) and 𝛼(𝑞) by Eqs. (14) and (15) the least 
square method was used with cell sizes {5, 6, 7, 8, 9, 10, 11}. 

 
a) Healthy bone tissue 

 
b) Bone tissue with osteoporosis 

Fig. 2. Images of healthy bone tissue and bone tissue with osteoporosis 
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Fig. 3. Graphics of parametrized spectra for healthy bone tissue 

It should be noted that the choice of interval of values of parameter 𝑞 depends on the image 
structure and palette. Nevertheless, the obtained results show that parametrized spectra may be 
used as classification signs in the image analysis. 

 
Fig. 4. Graphics of parametrized spectra for bone tissue with osteoporosis 

5.5. Rényi divergences 

A calculation of Rényi divergences of order 𝛼 (or 𝛼-divergences) allows us finding differences 
in structures of two images. For given probabilistic distributions 𝑝 = {𝑝௜} and 𝑞 = {𝑞௜} and the 𝛼-divergence is defined for some 𝛼 as follows: 

𝐷ఈ(𝑝, 𝑞) = 1𝛼 − 1 ln ෍ 𝑝௜ఈ𝑞௜ଵିఈ௡
௜ୀଵ . (16)

It is not difficult to verify that these values are non-negative for any 𝛼 , and the Rényi 
divergence as a function of 𝛼 is non-decreasing. 

 
a) 

 
b) 

 
c) 

Fig. 5. a), b) Healthy kidney tissue and c) tissue with pyelonephritis 
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Fig. 6. Graphics of Rényi divergences for various parameter values  

when comparing images of healthy tissues Fig. 5(a-b) 

For 𝛼 = 1 the divergence is given by the formula. 

𝐷ଵ(𝑝, 𝑞) = ෍ 𝑝௜ ln 𝑝௜𝑞௜
௡

௜ୀଵ . (17)

It is known as the Kullback-Leibler divergence, and up to sign the Eq. (17) is the Eq. (8), which 
describes the weighted entropy. 

For given initial measures, we applied direct fractal transform Eq. (7), obtained two sequences 
of transformed measures and calculated Rényi divergences between corresponding members of 
these sequences. We applied this approach in [28, 29] to analyze and classify some classes of 
biomedical preparation images. Consider the example of application of this method to the analysis 
of healthy tissue and tissue with pyelonephritis images. 

 
Fig. 7. Graphics of Rényi divergences for various parameter values  
when comparing images of healthy and invaded tissues Fig. 5(a, c) 

6. Conclusions 

Nowadays the concept of entropy may be considered as a general characteristic for the 
description of many processes. It is natural that our descriptions are based on observations, which 
are statistical by its nature. The mathematical formalization for statistical events is expressed in 
terms of distribution functions, and the entropy is also written by using these functions. It is 
significant that one may obtain entropy characteristics both for various dynamical systems, and 
for digital images which are phase portraits of such systems. Symbolic dynamics allows us giving 
a natural interpretation of statistical description of the dynamic system behavior: it shows the 
frequency with which a typical trajectory visits cells of a given partition. Thereby such a 
characteristic describes a distribution of a measure on the phase space. For a given measure, one 
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can calculate the partition entropy and metric entropy. Namely metric entropy is the base to 
calculate the information dimension of the measure support. The set of these dimensions is a kind 
of multifractal spectrum. Rényi entropies also use the metric entropy. Multifractal characteristics 
reveal essential peculiarities of image structure and may be used as classification signs. These 
methods are successfully applied in the analysis of a wide range of biomedical preparations images 
which have high resolution and very complex structure. So, the concept entropy, which is 
understood in dynamical systems as the system complexity, preserves its meaning in the 
application problems: based on entropy, the numerical characteristics of phase portraits show their 
complexity and in this way the behavior of the initial system. 
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