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Abstract. In this paper, a model for transverse web vibration in a roll-to-roll system is presented. 
Web axial tension and web axial speed, decisive parameters in the equation of motion that 
describes web vibration, are rigorously obtained by considering the two rolls-web coupled 
system’s dynamics, coupled with the equation of motion. According to the present analysis, the 
idealized simply-supported boundary conditions, commonly used in studies on vibrations of 
axially moving structures are not needed. Instead, a mathematical model comprised of the 
governing equation of web transverse vibration and the roll angular velocity – web axial tension 
relationship is solved as a coupled system. A finite-difference based algorithm is used for solving 
the coupled system of differential equations. It is worth noting that the web axial speed and 
web-transmitted tension are not constants when a certain amount of the web material is transferred 
from the unwinding roll to the winding roll; they vary nonlinearly after a short transient period. 
The transverse vibration response at selected points on the web span shows higher (lower) 
frequency fluctuations corresponding to lower (higher) transport axial speed. This behavior is 
significantly different from that of a vibrating web under constant axial speed and tension.  
Keywords: roll-to-roll system’s dynamics, axially moving web, coupled nonlinear vibration, 
finite difference method. 

1. Introduction 

Because of their importance in industrial processing of thin materials (textiles, papers, 
polymers, metals, and composites), axially moving string models are located at the heart of web 
dynamics studies. Researchers started to investigate the problem of vibration of axially moving 
strings since the 1950s [1-3]. Since then, the subject has been under increasing investigation [4]. 
Since then, the subject has been under increasing investigation. In all the published literature, so 
far, one can observe that strings are modeled as elastic or viscoelastic axially moving webs 
between simply supported ends [5, 6]. To achieve a good understanding of what have been done 
so far, the published studies can be classified into five categories: (i) Papers concerned with the 
modal vibrations of axially moving strings with constant axial velocity and constant transmitted 
tension [1-16] where special attention was placed on critical speeds and instabilities. (ii) Papers 
focusing on nonlinear oscillations of axially moving strings with constant axial velocity and 
varying transmitted tension [17-21] where parametric excitations and nonlinear stability were 
analyzed. (iii) Papers analyzing the periodic, quasi-periodic, chaotic, and transient motions of 
axially moving materials with axial acceleration and constant transmitted tension [22-32]. 
(iv) Papers presenting parametrically excited nonlinear responses of axially moving strings with 
time-harmonic varying axial velocity and constant transmitted tension [33-36] where the effects 
of parameters such as mean velocity, web stiffness and damping coefficients, and a middle support 
on frequency response curves and bifurcation points were investigated. (v) Papers investigating 
the vibrations and instabilities in axially moving strings with axial acceleration and varying 
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web-transmitted tension [37-40]. The outcomes of these studies were quite valuable for analyzing 
the motion of axially moving strings in applications related to band and chain saws, power 
transmission belts and chains, and other devices involving pulley-supported conveyors. 

In light of the fact that a significant number of engineering applications involving axially 
moving strings occur in unwinding / rewinding (roll-to-roll, or R2R) systems, the authors feel that 
formulations that model the problem of an axially moving string in isolation from the roll 
dynamics limits the model utility.  

R2R-based manufacturing is an efficient technology for high volume production. The 
technology of R2R manufacturing is well developed and has been applied for web printing in 
paper machines, textile fabrics, and film processors to make cheap production in short time. 
Recently, continuous R2R manufacturing enabled processes for patterning, coating, cutting, and 
linking different layers of flexible printed electronics at high speed and low cost. When combined 
with the emerging microcontact printing (𝜇CP) technology, the R2R manufacturing is believed to 
have broad impact on large-scale production. During the high-speed R2R unwinding / rewinding 
processes, it is critical to maintain the web tension within desired values. When employing soft 
lithography to print micro-features on a web, small vibration can cause undesirable fluctuations 
and precise account for dynamic behavior becomes vital for allowing sufficient control authority 
and ensuring product quality. 

In this paper, it is intended to rigorously consider the coupling between the roll-to-roll 
dynamics and the transverse vibration of the web between the rolls. In addition, one does not need 
to assume simply supported boundary conditions for the vibration problem since the unwinding 
and rewinding rolls enter the analysis as part of the overall model. This comprehensive approach 
couples the physics-based variations of axial web tension with angular roll velocities to the web 
vibration-imposed fluctuations. In order to study the coupled dynamics, the motion of the vibrating 
web while transferring from the unwinding roll to the rewinding roll is analyzed.  

2. Mathematical model and solution  

In order to study the web transverse vibration in this R2R system, one has to consider first the 
dynamic behavior of this system that leads to establishing the relationship between the rotational 
motion of the rolls and the tension transmitted into the axially moving web. Having established 
the velocity-tension relationship, one can then consider the equation of transverse vibrational 
motion of the web.  

2.1. The R2R system  

The simplest R2R system is that having two rolls with outer radii 𝑅௨௥ and 𝑅௥௥, and a single 
span web which has a deformed length 𝐿 as shown in Fig. 1. 

 
Fig. 1. The roll-to-roll system (outer radii 𝑅ଵ and 𝑅ଶ, span length 𝐿) 

Following the mathematical models of R2R systems presented in Brandenburg [41] and Koç 
[42], by assuming small width of the web in comparison to its length and considering small 
bending stiffness with no slip condition at the boundaries (rollers). Let us consider the web span 
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between points A and B as shown in Fig. 1. Then, Hooke’s law can be written as: 𝑇 = 𝐸𝐴 𝐿 − 𝐿଴𝐿଴ , (1) 

where 𝑇 is the axial stress in the web, 𝐸 is the modulus of elasticity of an elastic web, 𝐴 is the 
cross-sectional area of the web, and 𝐿଴ is the un-deformed length. Following Shelton (1986), the 
conservation of mass requires that 𝜌𝐴𝐿 = 𝜌଴𝐴𝐿଴, where 𝜌଴ and 𝜌 are the web material density 
before and after deformation, respectively. This leads to 𝜌 = 𝜌଴ ቀ ଵଵାఌቁ. Substituting this into the 
continuity equation: 

ቈ𝜕𝜌𝜕𝑡 + 𝜕ሺ𝜌𝑉ሻ𝜕𝑥 = 0቉.  

Integrating over the web length specified from point A to point B, and using a power series 
approximation lead to: 𝜕𝜕𝑡 ሾ𝐿ሺ1 − 𝜀ሻሿ ≈ 𝑉ଵ − 𝑉ଶሺ1 − 𝜀ሻ, (2) 

where 𝑉ଵ and 𝑉ଶ are the linear velocities at points A and B, respectively. Substituting for 𝜀 with 𝑇/𝐸𝐴, and neglecting the variation of 𝐿 with respect to time (i.e.,𝜕𝐿 𝜕𝑡⁄ = 0), then the following 
approximate web tension-velocity relationship is obtained: 

𝐿 𝑑𝑇𝑑𝑡  ≈  𝐸𝐴ሺ𝑉ଶ − 𝑉ଵሻ − 𝑇𝑉ଶ. (3) 

Let us then focus on the forces acting on a roll, one has to consider (i) the inertial torque, 
(ii) the torque caused by the web tension, (iii) the motor torque, and (iv) the friction torque, as 
shown in Fig. 2. 

 
Fig. 2. Free body diagram of the roll (torques acting on a roll) 

Assuming slowly varying roll inertia and radii, the dynamic equilibrium equation of each roll 
can then be written as: 𝑑𝑑𝑡 ሺ𝐽௨௥ ∗ Ω௨௥ሻ = 𝑅௨௥ ∗ 𝑇 + 𝐵௨௥ ∗ Ω௨௥ − 𝐶௨௥, (4) 𝑑𝑑𝑡 ሺ𝐽௥௥ ∗ Ω௥௥ሻ = −𝑅௥௥ ∗ 𝑇 + 𝐵௥௥ ∗ Ω௥௥ − 𝐶௥௥, (5) 

where Ω௞ is the rotational velocity of the roll “𝑘”, 𝐽௞ is the rotational moment of inertia, 𝐵௞ is the 
motor torque constant, and 𝐶௞ is the torque due to friction. The system of Eqs. (3)-(5) consists of 
nonlinear coupled equations that describe the R2R system’s dynamics. These differential 
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equations are numerically solved in the next section to find the time-domain description of R2R 
system’s motion. 

In light of the fact that the unwinding roll radius decreases and the rewinding roll radius 
increases by the same amount at the same time, Eqs. (4) and (5) need to be supplemented with the 
following equations, which describe radii variation:  

𝑅௨௥ሺ𝑡ሻ = 𝑅௨௥଴ − 𝜃௨௥2𝜋 ℎ, (6) 𝑅௥௥ሺ𝑡ሻ = 𝑅௥௥଴ + 𝜃௥௥2𝜋 ℎ, (7) 

where 𝑅௨௥଴ and 𝑅௥௥଴ are the initial radii of unwinding and rewinding rolls, respectively. ℎ is the 
web thickness. 𝜃௨௥  and 𝜃௥௥  are the angular displacements of unwinding and rewinding rolls, 
respectively. Note that in every turn, the radius of unwinding roll decreases by an amount that is 
equal to the thickness of the web and in the same time the radius of the rewinding roll increases 
by the same amount. Note also that: 𝑑𝜃௨௥𝑑𝑡 = Ω௨௥ ,   𝑑𝜃௥௥𝑑𝑡 = Ω௥௥.  

Due to changing the radii of rolls with time, moments of inertia also change with time as: 𝐽௨௥ሺ𝑡ሻ = 12 𝜋𝑊 ሾ𝑅௥ସሺ𝜌௥ − 𝜌௪ሻ + 𝜌௪ሾ𝑅௨௥ሺ𝑡ሻሿସሿ, (8) 𝐽௥௥ሺ𝑡ሻ = 12 𝜋𝑊 ሾ𝑅௥ସሺ𝜌௥ − 𝜌௪ሻ + 𝜌௪ሾ𝑅௥௥ሺ𝑡ሻሿସሿ, (9) 𝑑൫𝐽௨௥ሺ𝑡ሻ൯𝑑𝑡 = − 𝜌௪ ∗ 𝑊 ∗ ℎሾሾ𝑅௨௥ሺ𝑡ሻሿଷ ∗ Ω௨௥ሿ, (9a) 𝑑൫𝐽௥௥ሺ𝑡ሻ൯𝑑𝑡 = 𝜌௪ ∗ 𝑊 ∗ ℎሾሾ𝑅௥௥ሺ𝑡ሻሿଷ ∗ Ω௥௥ሿ, (9b) 

where 𝑊 is the width, 𝜌௥ is the density of rollers’ material, 𝑅௥ is the radius of each rollers’ core, 
Fig. 3. 

 
Fig. 3. Geometry of unwinding and rewinding rolls 

To this end, Eqs. (3)-(5) are re-written as: d𝑇d𝑡 =  𝐸𝐴𝐿 ሺ𝑅௥௥  Ω௥௥ − 𝑅௨௥   Ω௨௥ሻ − 1𝐿 𝑅௥௥   Ω௥௥ 𝑇, (10) 𝑑Ω௨௥𝑑𝑡 =  112 𝜋𝑊 ሾ𝑅௥ସሺ𝜌௥ − 𝜌௪ሻ + 𝜌௪𝑅௨௥ସ ሿ      · ቂሺ𝑅௨௥𝑇 + 𝐵௨௥Ω௨௥ − 𝐶௨௥ሻ + Ω௨௥ ൬𝜌௪ ∗ 𝑊 ∗ ℎ ቀ൫𝑅௨௥ሺ𝑡ሻ൯ଷ ∗ Ω௨௥ቁ൰ቃ, (11) 
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𝑑Ω௥௥𝑑𝑡 =  112 𝜋𝑊 ሾ𝑅௥ସሺ𝜌௥ − 𝜌௪ሻ + 𝜌௪𝑅௥௥ସ ሿ      · ቂሺ−𝑅௥௥𝑇 + 𝐵௥௥Ω௥௥ − 𝐶௥௥ሻ − Ω௥௥ ൬𝜌௪ ∗ 𝑊 ∗ ℎ ቀ൫𝑅௥௥ሺ𝑡ሻ൯ଷ ∗ Ω௥௥ቁ൰ቃ. (12) 

2.2. Web vibration model 

For modeling the vibration of the elastic web as an axially moving string, Hamilton’s principle 
can be used to derive the equation of motion for the traveling string as [6]: 𝜕ଶ𝑤𝜕𝑡ଶ + 2𝑣 𝜕ଶ𝑤𝜕𝑡𝜕𝑥 + ቆ𝜌𝐴𝑣ଶ −  𝑇𝜌𝐴 ቇ 𝜕ଶ𝑤𝜕𝑥ଶ + 𝑣. 𝜕𝑤𝜕𝑥 = 0, (13) 

where 𝑤 is the transverse displacement and 𝑣 is the axial speed of the web. Eq. (13) is physically 
coupled with the R2R system’s dynamic model via 𝑣 and 𝑇. Normalizing Eq. (13) by utilizing 𝐿 
as a spatial constant, ඥ𝜌𝐴𝐿ଶ 𝑇⁄  as a temporal parameter, and ඥ𝑇𝐴 𝜌⁄  as a reference velocity 
transforms the equation of motion into the following dimensionless one: 𝜕ଶ𝑤∗𝜕𝑡∗ଶ + 2 𝑣∗ 𝜕ଶ𝑤∗𝜕𝑡∗𝜕𝑥∗ + ሺ𝑣∗ଶ − 1ሻ 𝜕ଶ𝑤∗𝜕𝑥∗ଶ + 𝑣∗. 𝜕𝑤∗𝜕𝑥∗ = 0. (14) 

Note that variables with stars are dimensionless, and 𝑣∗ is a dimensionless transport speed that 
is the ratio of physical velocity and wave velocity. Eq. (14) is a hyperbolic partial differential 
equation (HPDE) for the transverse vibration of the axially moving string. 

3. Numerical solution and discussion 

A numerical simulation for describing the transfer of a certain amount of web material from 
the unwinding roll to the rewinding roll is first run. The variation of web axial velocity and 
transmitted tension with time are calculated. Then, the transverse vibration of the axially moving 
web is studied in light of the coupled web vibration-R2R dynamics formulation.  

3.1. The R2R System’s dynamics 

Eqs. (10)-(12) are numerically integrated to find the time-domain description of R2R system’s 
motion. Parameters of the system used in the simulation are given in Table 1 [43].  

Input torque shown in Fig. 4, is applied at both the unwinding and rewinding motors. 

Table 1. Parameters of the system 
S. No. Parameter Value 

1 Density of the web material 8190 kg/m3 

2 Density of the roller material 8050 kg/m3 
3 Thickness of the web 0.000275 m 
4 Width of the web 0.1 m 
5 Modulus of elasticity of web 117 GPa 
6 Radius of the roller (both) 0.04 m 
7 Initial radius of unwinder 0.15 m 
8 Initial radius of rewinder 0.04 m 
9 Frictional torque at unwinder roller 0.004 Nm 
10 Frictional torque at rewinder roller 0.002 Nm 
11 Moment of inertia of idler roller (𝐽௕) 0.001 kgm2 
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Fig. 4. Torque input at unwinding and rewinding rolls 

As a result of the input torque, the angular velocity and angular displacement of unwinding 
and rewinding rolls vary with time as shown in Figs. 5(a) and 5(b). 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 5. a) Angular velocity variation of rolls, b) angular displacement variation of rolls,  
c) radii variation of rolls with time, d) axial web velocity variation with time 

In Fig. 5(a), angular velocity of the rewinding roll increases with a much faster rate than the 
unwinding roll. This is because the rewinding roll has initially a lower moment of inertia than the 
unwinding roll. The opposite effect occurs after the two rolls reach the same angular velocity. In 
order to transfer the web material from the unwinding roll to the rewinding roll, both rolls attain 
same maximum angular displacement within the same time, as shown in Fig. 5(b). 

The variation of the radii of unwinding and rewinding rolls with time is shown in Fig. 5(c). As 
it might be intuitively expected, the radii variations will be such that the unwinding roll radius 
shrinks to the value of the initial radius of the rewinding roll and the rewinding roll radius grows 
to the value of the initial radius of unwinding roll within the same time. 

Axial velocity and tension in the web between two rolls are shown in Fig. 5(d). As a result of 
the input torques at the unwinding and rewinding rolls, the axial transport speed of the web starts 
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from zero, reaches a maximum value, and decreases to reach zero by the end of material complete 
transfer from the unwinding roll to the rewinding roll. 

The variation of the web-transmitted tension with time, shown in Fig. 6, is initially transient, 
and then becomes smoothly and slightly nonlinear. For consistent production, an industrial process 
should not be implemented on the web during the transient phase. 

 
Fig. 6. Web-transmitted tension variation with time 

3.2. Fixed and varying-speed web vibration 

In this section, Eqs. (14) that describes the transverse vibration of the axially moving web are 
solved in isolation of the R2R system’s dynamic response. A numerical approach based on a finite 
difference scheme is used to discretize Eq. (14) in the spatial coordinate. Hence: 𝜕𝑤∗𝜕𝑥∗ ฬ௫∗೔ = 𝑤∗ሺ௜ାଵሻ − 𝑤∗ሺ௜ିଵሻ2 ∗ 𝑑𝑥∗ , (15) 𝜕ଶ𝑤∗𝜕𝑥∗ଶ ቤ௫∗೔ = 𝑤∗ሺ௜ାଵሻ − 2 ∗ 𝑤∗௜ + 𝑤∗ሺ௜ିଵሻ𝑑𝑥∗ଶ , (16) 

which produces (𝑛 − 1) second-order ordinary differential equations as follows: 

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧𝑑ଶ𝑤∗ଵ𝑑𝑡∗ଶ  + 𝑣∗𝑑𝑥∗  𝑑𝑤∗ଶ𝑑𝑡∗ + ሺ𝑣∗ଶ − 1ሻ𝑑𝑥∗ଶ  ሺ−2 ∗ 𝑤∗ଵ + 𝑤∗ଶሻ + 𝑣∗.2 ∗ 𝑑𝑥∗ ∗ 𝑤∗ଶ = 0,𝑑ଶ𝑤∗ଶ𝑑𝑡∗ଶ  + 𝑣∗𝑑𝑥∗  ൬− 𝑑𝑤∗ଵ𝑑𝑡∗ + 𝑑𝑤∗ଷ𝑑𝑡∗ ൰ + ሺ𝑣∗ଶ − 1ሻ𝑑𝑥∗ଶ  ሺ𝑤∗ଵ − 2 ∗ 𝑤∗ଶ + 𝑤∗ଷሻ    + 𝑣∗.2 ∗ 𝑑𝑥∗ ሺ−𝑤∗ଵ + 𝑤∗ଷሻ = 0,⋮𝑑ଶ𝑤∗ሺ௡ିଵሻ𝑑𝑡∗ଶ  + 𝑣∗𝑑𝑥∗  𝑑𝑤∗ሺ௡ିଶሻ𝑑𝑡∗ + ሺ𝑣∗ଶ − 1ሻ𝑑𝑥∗ଶ  ൫𝑤∗ሺ௡ିଶሻ − 2 ∗ 𝑤∗ሺ௡ିଵሻ൯ + 𝑣∗.2 ∗ 𝑑𝑥∗ ∗ 𝑤∗ሺ௡ିଶሻ = 0.

 (17) 

Note that 𝑛 and 𝑑𝑥∗ represent the total number of spatial points and the step size, respectively. 
Eq. (17) can be cast in the following matrix form: dଶ𝑤∗d𝑡∗ଶ  + 𝑣∗ ∗ 𝐺 𝑑𝑤∗𝑑𝑡∗ + ቊሺ𝑣∗ଶ − 1ሻ𝐾 + ሺ𝑣∗. ሻ2 ∗ 𝐺ቋ 𝑤∗ = 0, (18) 

where 𝐺 and 𝐾 are ሺ𝑛 −  1ሻ × ሺ𝑛 −  1ሻ matrices, which are given by: 
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𝐺 =  1𝑑𝑥∗ ⎣⎢⎢⎢
⎡ 0 1 0 ⋯ 0−1 0 1 0 ⋮0 −1 ⋱ ⋱ 0⋮ 0 ⋱ ⋱ 10 ⋯ 0 −1 0⎦⎥⎥⎥

⎤, (18a) 

𝐾 =  1𝑑𝑥∗ଶ ⎣⎢⎢⎢
⎡−2 1 0 ⋯ 01 −2 1 0 ⋮0 1 ⋱ ⋱ 0⋮ 0 ⋱ ⋱ 10 ⋯ 0 1 −2⎦⎥⎥⎥

⎤. (18b) 

A state space representation is used, leading to the following system of 2ሺ𝑛 − 1ሻ first-order 
ordinary differential equations:  𝑤∗ଵ = 𝑦ଵ,    𝑤∗ଶ = 𝑦ଷ,     𝑤∗ଷ = 𝑦ହ, …,    𝑤∗ሺ௡ିଵሻ = 𝑦ଶ∗ሺ௡ିଵሻିଵ, (19)

⎩⎪⎪
⎪⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪
⎪⎪⎪
⎪⎧𝑑𝑦ଵ𝑑𝑡∗ = 𝑦ଶ,𝑑𝑦ଶ𝑑𝑡∗ = 𝑑ଶ𝑤∗ଵ𝑑𝑡∗ଶ  = − 𝑣∗𝑑𝑥∗ 𝑦ସ + ሺ𝑣∗ଶ − 1ሻ𝑑𝑥∗ଶ ሺ2 ∗ 𝑦ଵ − 𝑦ଷሻ − 𝑣∗.2 ∗ 𝑑𝑥∗ ∗ 𝑦ସ,𝑑𝑦ଶ𝑑𝑡∗ = 𝑑ଶ𝑤∗ଵ𝑑𝑡∗ଶ  = − 𝑣∗𝑑𝑥∗ 𝑦ସ + ሺ𝑣∗ଶ − 1ሻ𝑑𝑥∗ଶ ሺ2 ∗ 𝑦ଵ − 𝑦ଷሻ − 𝑣∗.2 ∗ 𝑑𝑥∗ ∗ 𝑦ସ,𝑑𝑦ଷ𝑑𝑡∗ = 𝑦ସ,𝑑𝑦ସ𝑑𝑡∗ = 𝑑ଶ𝑤∗ଶ𝑑𝑡∗ଶ  = − 𝑣∗𝑑𝑥∗  ሺ𝑦ଶ − 𝑦଺ሻ + ሺ𝑣∗ଶ − 1ሻ𝑑𝑥∗ଶ ሺ−𝑦ଵ + 2 ∗ 𝑦ଷ − 𝑦ହሻ − 𝑣∗.2 ∗ 𝑑𝑥∗ ሺ𝑦ଶ − 𝑦଺ሻ,⋮𝑑𝑦ଶ∗ሺ௡ିଵሻିଵ𝑑𝑡∗ = 𝑦ଶ∗ሺ௡ିଵሻ,𝑑𝑦ଶ∗ሺ௡ିଵሻ𝑑𝑡∗ = − 𝑣∗𝑑𝑥∗ 𝑦ଶ∗ሺ௡ିଵሻିଶ + ሺ𝑣∗ଶ − 1ሻ𝑑𝑥∗ଶ ൫−𝑦ଶ∗ሺ௡ିଵሻିଷ + 2 ∗ 𝑦ଶ∗ሺ௡ିଵሻିଵ൯       − 𝑣∗.2 ∗ 𝑑𝑥∗ 𝑦ଶ∗ሺ௡ିଵሻିଶ.

 (20)

This system is supplemented with the following initial conditions: 𝑦ଵሺ0ሻ = 𝑦ଷሺ0ሻ = 𝑦ହሺ0ሻ = ⋯ = 𝑦ଶ∗ሺ௡ିଵሻିଵሺ0ሻ = 𝑎ሺ𝑥∗ሻ, (21) 𝑦ଶሺ0ሻ = 𝑦ସሺ0ሻ = 𝑦ସሺ0ሻ = ⋯ = 𝑦ଶ∗ሺ௡ିଵሻሺ0ሻ = 𝑏ሺ𝑥∗ሻ, (22) 

where 𝑎ሺ𝑥∗ሻ and 𝑏ሺ𝑥∗ሻ are the initial displacement and initial velocity, respectively. To verify the 
modal developed for the transverse vibration of the string the study of Wickert [6] was considered. 
In [6] solution of HPDE was obtained using state space and modal analysis approach: 

𝑤∗ሺ𝑥∗𝑡∗ሻ = ෍ሾ𝑔௡ோሺ𝑡∗ሻ sinሺ𝑛𝜋𝑥∗ሻ cosሺ𝑛𝜋𝑣∗𝑥∗ሻ + 𝑔௡ூ ሺ𝑡∗ሻ sinሺ𝑛𝜋𝑥∗ሻ sinሺ𝑛𝜋𝑣∗𝑥∗ሻሿஶ
௡ୀଵ , (23) 

where 𝑔௡ோሺ𝑡∗ሻ and 𝑔௡ூ ሺ𝑡∗ሻ are the real and imaginary components of the generalized coordinate 
respectively which can be calculated using: 𝑔௡ோሺ𝑡∗ሻ = 𝑔௡ோሺ0ሻ cosሺ𝑤௡𝑡∗ሻ + 𝑔௡ூ ሺ0ሻ sinሺ𝑤௡𝑡∗ሻ, (24) 
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𝑔௡ோሺ𝑡∗ሻ = 𝑔௡ூ ሺ0ሻ cosሺ𝑤௡𝑡∗ሻ − 𝑔௡ோሺ0ሻ sinሺ𝑤௡𝑡∗ሻ, (25) 

where 𝑔௡ோሺ0ሻ and 𝑔௡ூ ሺ0ሻ are initial values of real and imaginary components of the generalized 
coordinate respectively. Comparison was made at dimensionless transport velocity of ‘0.1’, ‘𝑥∗’ 
equal to 0.5 and using the initial conditions given in Eqs. (26), (27), Fig. 7(a): 𝑎ሺ𝑥∗ሻ = 0, (26) 𝑏ሺ𝑥∗ሻ  = 0.01 ∗ expሺ𝑥∗ሻ ∗ sinሺ𝑝𝑖 ∗ 𝑥∗ሻ. (27) 
 

 
a) 

 
b) 

 
c) 

Fig. 7. a) Transverse response comparison at 𝑣∗ = 0.1 and 𝑥∗ = 0.5,  
b) transverse displacement at 𝑥∗ = 0.5 for webs having different speeds,  

c) frequency-domain response of displacement at 𝑥∗ = 0.5 for webs having different speeds 

First four terms of the analytical model presented in [6] are plotted (Exact) against the model 
developed in this study (Numerical). Response obtained from both solutions is quite comparable. 
Fig. 7(b) show mid-span dynamic response (𝑥∗ = 0.50), while the axially moving web traveling 
at the dimensionless velocities 𝑣∗ =  0.3, 0.5 and 0.7. The web tension is calculated as: 𝑇 = 𝜌𝑣∗ଶ 𝐴⁄ . 

Comparing the responses in Fig. 7(b), indicates that increasing the axial web speed leads to a 
reduced vibration frequency. The frequency-domain responses, obtained by applying Fast Fourier 
Transform, are shown in Fig. 7(c). It is noted that the webs with non-dimensional speeds of 0.0 
(stationary web), 0.3, 0.5, and 0.7 have their lower vibration frequencies at 51.2, 43.5, 33.4, and 
22.3 Hz, respectively. 

The effect of the axial translating speed of the beam on its motion periodicity is monitored 
through the phase portraits and Poincar’e maps shown in Figs. 8(a)-8(c). It is observed that the 
vibration can be classified as a period-one motion for the nondimensional speeds of 0.0, 0.3, and 
0.5. For a stationary beam, Fig. 8(a) shows a perfectly periodic motion. Note that the beam vibrates 
between a pair of negative and positive values around the zero vertical neutral line. As the axial 
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speed increases to 0.3 and then to 0.5, the motions shown if Figs. 8(b) and 8(c) become 
quasi-periodic, with positive and negative amplitudes considerably less that these attained by the 
stationary beam. 

 
a) 

 
b) 

 
c) 

Fig. 8. The phase trajectory and Poincare map of axially moving web with: 
a) 𝑣∗ = 0.00, b) 𝑣∗ = 0.30, c) 𝑣∗ = 0.50. 

3.3. The coupled web vibration – R2R dynamics problem 

In this section, Eq. (14) is solved together with the system of Eqs. (10)-(12), as a coupled 
system that describes the transverse vibration of the axially moving web between the unwinding 
and the rewinding rolls. The numerical finite difference approach utilized in the previous section 
is used here. Eq. (13) is replaced with Eqs. (19) and (20), Eqs. (10)-(12) are augmented with the 
Eqs. (6), (7), and the initial conditions (26) and (27) are used for solving the coupled system for 
the time-domain response.  

Figs. 9(a)-9(c) show dynamic responses (in terms of normalized displacements) monitored at 
the three representative locations (𝑥∗ = 0.25, 0.50 and 0.75), respectively. 

Transverse vibration of the axially moving web is studied in light of the coupled web 
vibration-R2R dynamics formulation. Response, in terms of normalized displacement, is obtained 
at three representative locations (i.e., 𝑥∗ = 0.25, 0.50 and 0.75), and depicted in Figs. 9(a), 9(b), 
and 9(c), respectively. It is clear that these responses represent non-periodic oscillations. At the 
early and late phases of material transfer from the unwinding roll to the rewinding roll, the axial 
web speed changes rapidly with time leading to high frequency fluctuations in the vibration 
response. Low frequency response is noted in the middle of the web material transfer time interval, 
due to the slow change in axial web speed with time. It is observed that vibrations of an axially 
moving web are more influenced by the R2R systems’ dynamics than the R2R system’s dynamics 
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is affected by the vibrations of the axially moving web. In other words, a dominantly “one way” 
coupling is noted. 

 
a) 

 
b) 

 
c) 

Fig. 9. Transverse displacement and web speed (dimensionless) at:  
a) 𝑥∗ = 0.25, b) 𝑥∗ = 0.50, c) 𝑥∗ = 0.75 

The frequency-domain responses, obtained by applying Fast Fourier Transform on data of 
Figs. 9(a)-(c), are shown in Fig. 10. It is noted that the web has multiple frequencies with highest 
amplitude at the web center. Fig. 11 show that transverse motion of the axially moving web is 
quasi-periodic.  

 
Fig. 10. Frequency-domain response of displacement at different points on the web 

From the analysis, one can observe that the vibration characteristics of an axially moving string 
coupled with a roll-to-roll dynamic are significantly different from those obtained by considering 
the vibration of an axially moving string between two simple supports, in isolation from the web 
hosting system. In addition, vibrations of an axially moving web are more influenced by the R2R 
dynamics than the R2R dynamics affects by the vibrations of the axially moving web. In other 
words, a dominantly “one way” coupling is observed. 
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a) 

 
b) 

Fig. 11. The phase trajectory and Poincare map of axially moving web 

4. Conclusions 

The transverse vibration of an axially moving web of a roll-to-roll system was studied, 
considering the coupling between the vibration governing equation and the roll-to-roll system’s 
dynamic model. The axially moving web was modeled as string, which was mathematically 
represented by a second order hyperbolic partial differential equation. The roll-to-roll dynamics 
was described by non-linear coupled first order ordinary differential equations. The coupled 
equations were solved numerically using a finite difference scheme. It was found that the 
web-transmitted tension has undergone a short transient phase followed by a smooth nonlinear 
variation in time. While transferring a certain amount of web material from the unwinding roll to 
the rewinding roll, the angular speed of both rolls varied nonlinearly, attaining the same maximum 
angular speed within the time of web material transfer. In the case of imposed constant web axial 
speed and web- transmitted tension, a higher transport speed resulted in reduced vibration 
amplitude as well as reduced vibration frequency. In the case of varying web axial speed and 
web-transmitted tension, based on the R2R system’s dynamics, the transverse vibration of the 
axially moving web between rolls was found to be non-periodic; it is characterized with higher 
frequency response to rapid changes of web axial speeds and lower frequency response to slow 
changes of web axial speeds. 
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