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Abstract. This work displays results of a modelling-based investigation a process of multi-cutter 
turning process focusing on the stability of nominal steady-state case. The modelling is based on 
the new surface formation equations, on the equations of motion and on a rational fraction cutting 
law. The influence of the parameters of the system on the stability of the steady cut is analyzed. 
Keywords: multi-cutter turning, dynamics, steady state cutting, bifurcation analysis. 

1. Introduction 

Multi-cutter turning is one of the ways to increase the productivity of turning process in 
manufacturing [1-5]. At certain conditions, the turning process involving constant chip thickness 
incurs dynamic instability [5-8, 11]. The loss of stability and the onset of auto-oscillations may be 
sensitive to several phenomena, such as the regenerative cutting of the surface created by the 
previous tool pass, ploughing caused by the flank face interaction, workpiece flexibility, 
temperature-induced effects [8-14]. In the case of multi-cutter turning, the deflection (vibrations) 
of the cutters is an important parameter.  

Specific features of modeling multi-cutter turning dynamics with the regeneration-based 
interaction of the cutters are considered in the present work, in view of the steady state cutting 
stability evaluation. 

2. Modeling approach 

The workpiece is assumed to be a cylinder-shaped rigid body (of radius ܴ and of length ݈) 
rotating around its longitudinal axis with angular velocity ߱  (Fig. 1(a)). ݊  cutters are 
simultaneously engaged in turning. These cutters are disposed in a circular arrangement with 
angular interval ߮௝ (݆ = 1, ݊) between neighbouring cutters, such that ∑ ߶௝௡௝ୀଵ =  fixed on a ,ߨ2
common carrier (Fig. 1). This carrier realizes a feed motion along the workpiece axis with a 
constant speed ܸ. 

 
a) 

 
b) 

Fig. 1. Multi-cutter turning modeling 

To put forward the multi-cutter-related phenomena, only the axial degrees of freedom of 
cutters and axial cutting force components are taken in consideration. 

Each cutter (numbered by the index ݆) is represented as a rigid body, independently fixed on 
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the carrier by a holder, featuring its individual stiffness and damping.  
The equations, formulating the cutting-generated surfaces are bead on the following finite 

relations [4, 9, 15, 16]: 

൞ܦ௝(ݐ) = ݐܸ − (ݐ)௝ݑ − ݐ௝ିଵ൫ܮ − ௝ିଵ൯ݐ + ܣ − (ݐ)଴௝,ℎ௝ܪ = maxൣ0, (ݐ)௝ܮ,൧(ݐ)௝ܦ = ݐ௝ିଵ൫ܮ − ௝ିଵ൯ݐ + ℎ௝(ݐ),  (1)

where ܮ௝(ݐ) is the axial distance from the free end of the part to the current surface under ݆-th 
cutter; ܦ௝(ݐ)  is the axial distance from the ݆ -th cutter edge to the surface being processed ܮ௝ିଵ൫ݐ −  axial deflection (vibration) of the ݆-th cutter from its nominal quasi-static – (ݐ)௝ݑ ;௝ିଵ൯ݐ
location; ℎ௝(ݐ) – uncut chip thickness for the ݆-th cutter; ܣ = ݈ − ܼ଴  – constant distance, ݈  – 
length of the cylindrical surface being turned; ܼ଴ – initial axial position of the first cutter (nominal 
set value), ܪ଴௝ – initial axial offset of the ݆-th cutter (nominal set value) from the first one, axial 
for which ܣ is defied, ݐ – current time. 

Cutting forces in axial direction for each cutter are accounted for by an analytical model based 
on a rational fraction expression [8, 11]:  

(ݐ)௝ܨ = (ݐ)଴ℎ௝ܭ ቀܿ + ቁቀܿ(ݐ)ℎ௝ݎ + ℎ௝(ݐ)ቁ , (2)

with ܭ଴ =  chip ܤ ,௅ characteristic stress value for given materialߪ ,apparent static stiffness ܤ௅ߪߛ
width; ݎ ,ߛ non-dimensional coefficients, determined experimentally for given process conditions 
at hand, ݆ cutter number; ܿ characteristic linear size of the cutting process. 

Equations of motion for the vibrations of cutters in the axial direction read as follows: 

௝݉ݑሷ௝ = − ௝݀ݑሶ௝ − ௝݇ݑ௝ + ݆     ,௝ܨ = 1, ݊, (3)

with ௝݉  – mass of ݆-th cutter, ௝݀  and ௝݇  – damping and stiffness coefficients for ݆-th cutter, 
respectively. 

Eqs. (1-3) constitutes a complete model for dynamics of the multi-cutter turning process under 
consideration. This system of equations is then transformed to non-dimensional form, by means 
of the following characteristic scales factors choice: distance scale ܺ∗ – feed per turn ℎ଴, time 

scale – ∗ܶ = ට∑ ௜ܶଶ௡௜ୀଵ ݊⁄  , ௜ܶ = ඥ ߨ2 ௝݉ ௝݇⁄ , ௜ܶ – free oscillation period for each cutter, cutting 

force scale – ܨ∗ = ଴ℎ଴ܭ . Hence, in the case when all the cutters have identical properties (݉ଵ  =  ݉ଶ  =. . . = ݉, ݇ଵ  =  ݇ଶ = . . . = ݇, ݀ଵ = ݀ଶ =. . . = ݀, ଵܶ = ଶܶ = ⋯ ) the Eqs. (1-3) 
would become: 

ەۖۖ
۔ۖ
(߬)௝∆ۓۖ = ߩ߬ (߬)௝ߦ −  − Λ௝ିଵ൫߬ − ௝߬ିଵ൯ + ޿ − ଴௝߅ ,     ෍ ௝߬௡௝ୀଵ = (߬)௝ߟ,ߩ   =  max ቀ0, ∆௝(߬)ቁ,    0 = −Λ ௝(߬) + Λ௝ିଵ൫߬ − ௝߬ିଵ൯ + ௝ᇱᇱߦ,(߬)௝ߟ = ௝ᇱߦߞߨ4 − − ௝ߦଶߨ 4 + Π௝,    Π௝ߢଶߨ4 = ଵߟ ൫ߟ∗ + ∗ߟ௝൯൫ߟݎ + .௝൯ߟ

 (4)

Here the non-dimensional parameters are defined as follows: 
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௝ߦ = ௝ℎ଴ݑ ߞ      , = ݀2 √݉ ݇ ߢ       , = ଴݇ܭ ௝ߟ      , = ℎ௝ℎ଴ ∗ߟ     , = ℎܿ଴  ,     Π௝ = (߬)଴ℎ଴, Λ௝ܭ௝ܨ  = ௝ℎ଴ܮ  ,    ∆௝  = ௝ℎ଴ܦ  ߩ      , = ߨ2ܶ߱ ޿     , = ℎ଴ܣ ଴௝߅     , = ଴௝ℎ଴ܪ . (5)

It should be noted that the parameter 1/ߩ corresponds is proportional to the cutting speed and Π௝ non-dimensional axial component of cutting force.  

3. Stability analysis of steady-state double cutter turning process 

A specific case of two cutters is considered in Fig. 1(b), when the cutters are disposed around 
the workpiece, defined by the angles ߮ଵ = ߨ −  ∆߮  and ߮ଶ = ߨ +  ∆߮ , thus defined by one 
parameter ∆߮ – deviation of the angle between cutters from ߨ. In this case, the system of Eq. (4) 
take the following expression: 

ەۖۖ
۔ۖ
(߬)ଵ∆ۓۖ = ߩ߬ − (߬)ଵߦ − Λଶ(߬ − ߬ଶ) + (߬)ଶ∆     ,޿ = ߩ߬ − (߬)ଶߦ − Λଵ(߬ − ߬ଵ) + ޿ − (߬)ଵߟ,଴߅ = max൫0, ∆ଵ(߬)൯,     ߟଶ(߬) = max൫0, ∆ଶ(߬)൯,Λ ଵ(߬) = Λଶ(߬ − ߬ଶ) + (߬)ଵ(߬),    Λଶߟ = Λଵ(߬ − ߬ଵ) + ଵᇱᇱߦ,(߬)ଶߟ = ଵᇱߦߞߨ4 − − ଵߦଶߨ4 + ଶᇱᇱߦ    ,Πଵߢଶߨ4 = ଶᇱߦߞߨ4− − ଶߦଶߨ4 + Πଶ,Πଵߢଶߨ4 = ଵߟ ∗ߟ) + ∗ߟ)(ଵߟݎ + (ଵߟ ,     Πଶ = ଵߟ ∗ߟ) + ∗ߟ)(ଶߟݎ + (ଶߟ .

 (6)

In the case of steady state cutting, the distances ∆௝ ≥ 0 are equal to the respective nominal cut 
depths, i.e. ߟ௝ = ∆௝ ≥ 0; ݆ = 1, 2. Hence, from Eq. (6) it follows: 

൞ߟଵ(߬) = ∆ଵ(߬) = ߬ଶߩ − (߬)ଵߦ + ߬)ଶߦ − ߬ଶ) + (߬)ଶߟ,଴߅ = ∆ଶ(߬) = ߬ଵߩ − (߬)ଶߦ + ߬)ଵߦ − ߬ଵ) − ଴. (7)߅

After substituting Eq. (7) into the system Eq. (6) one obtains the classic form of equations of 
motion: ߦ௝ᇱᇱ = ௝ᇱߦߞߨ4− − ௝ߦଶߨ4 + ݆    ,Π௝ߢଶߨ4 = 1,2. (8)

Due to Eqs. (7-8), the steady state cut at constant thickness ߟ௝଴ ≡ ௝଴ߟ =  ௝ is possible onlyݐݏ݊݋ܿ
at constant deflection magnitudes of each of cutters: ߦ௝଴ ≡ ௝଴ߦ = ௝ݐݏ݊݋ܿ . Thus, the Eqs. (7-8) 
reduce to the following steady case:  

۔ۖەۖ
ଵ଴ߟۓ = ߬ଶߩ − ଵ଴ߦ + ଶ଴ߦ + Πଵ଴    ,߅ = ଵ଴ߟ ∗ߟ) + ∗ߟ)(ଵ଴ߟݎ + (ଵ଴ߟ ଵ଴ߦ     , = ଶ଴ߟ,Πଵ଴ߢ = ߬ଵߩ − ଶ଴ߦ + ଵ଴ߦ − Πଶ଴    ,߅ = ଶ଴ߟ ∗ߟ) + ∗ߟ)(ଶ଴ߟݎ + (ଶ଴ߟ ଶ଴ߦ     , = Πଶ଴. (9)ߢ

One can define the notation: 

௝݌ = ߲Π௝߲ߟ௝ ቤఎೕ ୀఎೕబ = ݎ + ଶ(1∗ߟ − ∗ߟ൫(ݎ + ௝଴൯ଶߟ ,    ݆ = 1, 2, (10)
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representing tangent stiffness coefficients of the tool-workpiece interactions, acting on each cutter, 
and depending on the cut thickness. In particular, ݌௝(0) = ௝ห ఎబ ೕ → ஶ݌ ,1 =  .ݎ

Variation equations in the vicinity of unperturbed state are the following: 

ቊߦߜଵᇱᇱ + ଵᇱߦߜߞߨ4 + ଵߦߜଶߨ4 = (߬)ଵߦߜ−ଵ൫݌ ߢଶߨ4 + ߬)ଶߦߜ − ߬ଶ)൯,ߦߜଶᇱᇱ + ଶᇱߦߜߞߨ4 + ଶߦߜଶߨ4 = (߬)ଶߦߜ−ଶ൫݌ ߢଶߨ4 + ߬)ଵߦߜ − ߬ଵ)൯. (11)

For fixed values ሼ߬ଵ, ߬ଶ, ,∗ߟ ,ݎ ,ଵ݌ሽ, the coefficients ሼ߅  .ଶሽ are completely defined by Eq. (10)݌
The solution of the system Eq. (11) will be sought in the form ߦߜ௝ = С௝exp(߬ߣ) . After 

combining Eq. (9) and Eq. (11), one obtains: ܲ(ߣ; ,ߞ ,ߩ (ߢ = ሾߣଶ + ߣߞߨ4 + ଶ(1ߨ4 + ଵ)ሿ݌ߢ  × … ×  ሾߣଶ + ߣߞߨ4 + ଶ(1ߨ4 + (ߩߣ−)ଶ exp݌ଵ݌ଶߢସߨ ଶ)ሿ      −16݌ߢ = ߩ    ,0 = ߬ଵ + ߬ଶ.  (12)

The characteristic Eq. (12) enables, for any value of ߣ to determine static cutting stiffness ߢ as 
a function of ߩ, i.e. the workpiece revolution period. The system under consideration would not 
admit static divergence instability of the steady state cut; only a dynamic bifurcation of (Poincaré 
– Andronov – Hopf type) is possible, leading to autooscillations. From the Eqs. (12), by putting ߣ =  :and by verifying the real and imaginary parts of the equation, one obtains ݏ݅ߨ2

ቐܴ݁ሾܲሿ = ସݏ − (2 + ଵ݌ߢ + ଶ ݌ߢ + ଶݏ(ଶߞ4 + (1 + ଵ݌ߢ + ଶ൫1 ݌ଵ݌ଶߢ+      (ଶ݌ߢ − cos(2ݏߩߨ)൯ = ሾܲሿ݉ܫ,0 = ଷݏ ߞ 4− + (4 + ଵ ݌ߢ 2 + ݏߞ(ଶ ݌ߢ2 + (ݏߩߨ2)ଶsin ݌ଵ݌ଶߢ = 0.                         (13)

4. Results and discussion 

By solving the Eqs. (9, 12), one can construct, for the steady state cut process, the boundaries 
of the stability zones with respect to the relative static stiffness parameter ߢ and to the cutting 
speed parameter 1 ⁄ߩ . On these boundaries Static deflections ߦ௝଴, as well as cutting forces Π௝଴ and 
chip thickness ߟ௝଴. Several values of delay and ratio ߬ଵ ߬ଶ⁄ = ሼ1;  2ሽ and of relative axial position 
of the cutters ߅ = ሼ0;  1ሽ have been tested. Fig. 2 illustrates the computation results for the 
following data set: ߟ ∗ ݎ ,0.15 = ߞ ,0.65 = = 0.05 and ߬ଵ ߬ଶ⁄ ߅ ,1/3 = = 0.2. 

An increase in the cutting speed parameter 1 ⁄ߩ  involves an observable extension the 
instability zones – Fig. 2(а). In the same time, cutting force and deflection magnitudes, specific 
for each cutter, are practically independent of the cutting speed parameter – Fig. 2(b)-2(c). A 
significant variation of steady state cut stiffness is takes place when the workpiece rotation rate is 
close to multiples of the cutter eigenvalues – Fig. 2(d). Discontinuities on these diagrams 
correspond to integer values of ߩ. 

From analogous results, obtained for different values of the delay ratio ߬ଵ ߬ଶ⁄ = ሼ1;  2ሽ and 
relative axial position ߅ = ሼ0;  1ሽ, shows that the stability boundaries in feature only small 
sensitivity to these parameters, while significant variations are observed in cutting force, 
deflection and cut thickness magnitudes. In the case of symmetrical tool ߬ଵ ߬ଶ⁄ = 1, the presence 
of the initial axial shift between cuuters ߅ and would lead to a slight variation in the stability 
boundaries in the static stiffness parameter ߢ . In the same time the shift ߅ ≠ 0 , even for 
symmetrical cutter disposition ߬ଵ ߬ଶ⁄ = 1, leads to a differentiation in the relative stiffness and in 
cut stiffness. 

In the case of unsymmetrical angular distribution of the cutters, i.e. ߬ଵ ߬ଶ⁄ > 1, and of even 
axial location ߅ = 0, a substantial difference appears in the chip thickness values for each cutter. 
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a) 

 
b) 

 
c) 

 
d) 

Fig. 2. a) Relative static stiffness parameters ߢ, b) cutting force Π௝଴,  
c) static deflection ߦ௝଴, d) cut thickness ߟ௝଴ as functions of 1 ⁄ߩ  

5. Conclusions 

Based on the use the surface generation relationships, an algorithm is built for stability lobe 
diagram construction for the case of multi-cutter turning, taking into account arbitrary axial and 
angular distribution of cutters. 

It is shown that in the two-cutter case, the stability boundaries of the steady state cutting 
process depend on the workpiece rotation rate and, for even axial positioning, do not depend on 
the angular distribution of cutters. 
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