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Abstract. The paper describes some features of behavior of a mechanical system with  
self-synchronizing vibroexciters. The influence of friction torque in the bearings of vibroexciters 
rotors on their self-synchronization has been established by means of experimental research and 
mathematical simulation. Both the causes and frequency ranges of gaps in frequency responses 
has been found out. Further modification of the previously proposed algorithm for resonant tuning 
has expanded working regimes limits of the control system and improved resonant tuning stability. 
Keywords: resonant tuning, self-synchronization, limited capacity, nonlinear oscillations, 
debalance exciter. 

1. Introduction 

Power efficiency is one of the urgent problems in vibrating machines design which are widely 
used in modern mining technologies and material treatment [1-4]. By now, vibrating machines 
with unbalanced exciters operating in above-resonance mode have become widespread. This is 
due to the high stability of working body oscillations magnitude in relation to changes of machine 
parameters and operation load and relative simplicity and reliability of machine design. Main 
disadvantages of these machines are: low efficiency of driving force and the necessity of powerful 
motors to pass resonance [1, 3, 5]. 

One way to increase vibrating machines efficiency is to make them operate in resonant mode. 
However, usually resonant mode appears to be unstable because of nonlinearity of oscillating 
system, its interaction with the drive, technological load fluctuations, and etc. [5-8]. 

The issue of resonant mode stabilization is well developed for machines driven by DC motors 
[7-10]. In this case, the adjustment is performed by the system which controls motor angular 
velocity by regulating excitation current or supply voltage [8]. Papers [10, 11] consider different 
methods for resonant mode stabilization by controlling the angular velocity of rotating unbalanced 
exciters without specific reference to drive type. 

For vibrating machines with AC motors, controlling the angular velocity of unbalanced 
exciters is a certain problem. This problem is associated with the slip effect which essentially 
depends on oscillations of machine working body [10, 12-14]. In [15, 16] the authors of this article 
proposed methods and algorithms for controlling resonant oscillations of single-mass vibrating 
machines with unbalanced exciter driven by AC motor. However, these works tended to consider 
excitation schemes with a single exciter. In case of several exciters, it is initially assumed that they 
rotate synchronously in opposite directions and produce unidirectional oscillations. 
Synchronization of exciters rotation is usually provided by the self-synchronization phenomenon 
[5, 17]. Note that self-synchronization occurs only under certain conditions which depend on 
parameters of oscillating system and parameters of oscillations (magnitude, frequency and mode 
shape). It is particularly difficult to maintain self-synchronization near resonance if system 
parameters and operation load change [15]. 

2. Design scheme of the machine 

This paper considers dynamics features of a mechanical system with self-synchronizing 
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exciters in the resonance zone on the example of a single-mass system. The oscillations of the 
system are excited by two unbalanced exciters driven by AC motors connected to a single power 
source. Design scheme of the considered system is shown in Fig. 1. The platform, simulating the 
working body of the machine, is considered as a rigid body on viscoelastic supports with linear 
elastic and damping characteristics. Cartesian coordinate system ݔܱݕ is used to describe motion 
of the machine. Origin of the coordinate system is aligned with static equilibrium position of the 
platform’s center of mass. 

 
Fig. 1. Design scheme of the machine 

Two identical AC motors with equal unbalanced weights at both ends of the rotors are installed 
on the platform symmetrically with respect to the vertical axis ܱݕ. The rotors’ axes are parallel 
with each other and perpendicular to the ݔܱݕ plane. The motors are connected to three-phase AC 
power source via a single frequency converter so that their rotors rotate in opposite directions. 

Motion of the system is described by five generalized coordinates: the linear displacements of 
the platform’s center of mass in the ܱݔ and ܱݕ directions, rotation angle ߮ of the platform and 
rotors’ rotation angles ߮ଵ and ߮ଶ. All angular coordinates mentioned here are measured from the ܱݔ axis counterclockwise. Differential equations of motion for the system have been derived 
using Lagrange equations of the second kind [19]: ݉ݔሷ + ݇௫ݔሶ + ܿ௫ݔ = ݉௥ଵݎଵሺ ሶ߮ ଵଶcos߮ଵ + ሷ߮ ଵsin߮ଵሻ + ݉௥ଶݎଶሺ ሶ߮ ଶଶcos߮ଶ + ሷ߮ ଶsin߮ଶሻ					+ሺ݉௥ଵߩଵsinߜଵ + ݉௥ଶߩଶsinߜଶሻ ሷ߮ ሷݕ݉, + ݇௬ݕሶ + ܿ௬ݕ = ݉௥ଵݎଵሺ− ሶ߮ ଵଶcos߮ଵ + ሷ߮ ଵsin߮ଵሻ + ݉௥ଶݎଶሺ− ሶ߮ ଶଶcos߮ଶ + ሷ߮ ଶsin߮ଶሻ,ܬ ሷ߮ + ݇ఝ ሶ߮ + ܿఝ߮ = ሺ݉௥ଵߩଵsinߜଵ + ݉௥ଶߩଶsinߜଶሻݔሷ					+	݉௥ଵߩଵݎଵሾ ሶ߮ ଵଶsinሺ߮ଵ − ଵሻߜ − ሷ߮ ଵcosሺ߮ଵ − ଶሾݎଶߩ݉௥ଶ	+					ଵሻሿߜ ሶ߮ ଶଶsinሺ߮ଶ − ଶሻߜ − ሷ߮ ଶcosሺ߮ଶ − ଵܬ,ଶሻሿߜ ሷ߮ ଵ − ݉௥ଵݎଵሾݔሷ sin߮ଵ − ሺݕሷ + ݃ሻcos߮ଵ − ሷ߮ ଵcosሺ߮ଵߩ − ଵሻሿߜ = ଵܯଵ൫ߪ ଶܬ,௙ଵ൯ܯ− ሷ߮ ଶ − ݉௥ଶݎଶሾݔሷ sin߮ଶ − ሺݕሷ + ݃ሻcos߮ଶ − ሷ߮ ଶcosሺ߮ଶߩ − ଶሻሿߜ = ଶܯଶ൫ߪ ,௙ଶ൯ܯ−

	 (1)

where: ݉௥ଵ, ݉௥ଶ – unbalanced masses of rotors, ݎଵ, ݎଶ – eccentricities of unbalanced masses, ܬ௥ଵ, ܬ௥ଶ – moments of inertia for unbalanced rotors; ݉ = ݉଴ +݉௥ଵ + ݉௥ଶ – full mass of the system; ݉଴ – mass of the platform; ݇௫, ݇௬, ݇ఝ – damping coefficients of supports in a horizontal, vertical 
and angular directions respectively; ܿ௫, ܿ௬, ܿఝ – stiffness coefficients of the supports in horizontal, 
vertical, and angular directions, respectively; ߩଵ, ߩଶ – distance from the platform’s center of mass 
to the axes of rotors respectively; ߜଵ, ߜଶ = ߨ −  axis and the axis, which ݔ ଵ – angles between theߜ
pass through platform’s center of mass and the axis of the rotors in plane ݔܱݕ  (counted 
counterclockwise), and ߜଵ = arctgሺ݄/ܽሻ, ߜଶ = ߨ − arctgሺ݄/ܽሻ, where ݄ is distance between the 
axis of rotor and axis ܱݔ;  2ܽ = 2݈  is distance between springs, ܾ =  0 (see Fig. 1);  ܬ = ଴ܬ + ݉௥ଵߩଵଶ + ݉௥ଶߩଶଶ  – moment of inertia of the system; ܬ଴  – moment of inertia of the 
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platform; ݃ – gravitational acceleration; ߪଵ = ଶߪ ,1+ = –1 – constants that define the direction of 
rotors’ rotation; ܯ௙ଵ, ܯ௙ଶ – resistance moment for the rotors. 

Torques ܯଵ, ܯଶ in right-hand side of Eq. (1) could be described by static characteristic of 
motors. The characteristics are obtained using simplified Kloss formula: ܯଵ = ଵሻݏଵሺܯ = ଵݏ	௖௥ଵܯ	2 ⁄௖௥ଵݏ + ௖௥ଵݏ ⁄ଵݏ ଶܯ, = ଶሻݏଶሺܯ = ଶݏ	௖௥ଶܯ	2 ⁄௖௥ଶݏ + ௖௥ଶݏ ⁄ଶݏ ,	 (2) 

where ܯ௖௥ଵ	, ܯ௖௥ଶ	 – critical (maximum) torques for each motor, ݏ௖௥ଵ	, ݏ௖௥ଶ	 – slip at critical torque, ݏଵ = 1 − ܲห ሶ߮ ଵ ݂⁄ ௘ห, ݏଶ = 1 − ܲห ሶ߮ ଶ ݂⁄ ௘ห – current slip determined by frequency ௘݂  and angular 
velocities of the rotors ሶ߮ ଵ, ሶ߮ ଶ, ܲ = 2 is a number of poles pairs. 

The mathematical model provided, together with some results of the numerical simulation of 
its dynamics, taking into account the interaction with AC motors, were described in detail in [18]. 

In order to automatically adjust and maintain the resonance mode of oscillations, a frequency 
control system for the supply voltage has been developed and implemented [15, 16, 18]. An 
appropriate prototype in the form of resiliently supported platform with two motor-vibrators has 
been designed for experimental verification (see Fig. 2) [20]. 

Three main resonant frequencies have been defined experimentally: ݌ଵ = 21 Hz, ݌ଶ = 32 Hz; ݌ଷ =  36.5 Hz. The frequency ݌ଵ  corresponds to intense angular oscillation of the platform 
combined with horizontal oscillations with small magnitude. At the frequency ݌ଶ only vertical 
oscillations of the platform are excited. At frequency ݌ଷ intensive horizontal oscillations arise, 
combined with angular oscillations with relatively small magnitude. These experimentally defined 
resonant frequencies have been used to identify the parameters of the mathematical model. 

However, the results of mathematical simulation and experiments have revealed a number of 
particular properties that were not described before. 

This mainly relates to the influence of friction torque in the bearings of motors rotors on the 
self-synchronization of the exciters, and also to instability of the oscillations on frequencies above 
vertical resonant frequency. These recently revealed properties required certain modifications of 
the previously proposed control algorithms. 

3. Influence of friction torque in the bearings of exciters 

Experimentally, we found that near the vertical resonance, when the exciters rotate in opposite 
directions with equal velocities, the difference in their phase angles could be observed. This 
indicates that the required condition of self-synchronization is violated at the antiphase rotation of 
the exciters. 

Fig. 2 shows the position of the exciters, at a fixed moment of time, in stroboscopic 
illumination at synchronous frequency of 29 Hz (the resonant frequency is 32 Hz). The strobe 
frequency is synchronized with the lowest position of the right-hand disbalance. It can be seen, 
that the left-hand disbalance is rotated at an angle ߙ ≈ 15° relatively to the right-hand disbalance 
position. Work [17] mentioned the influence of different friction torques on the  
self-synchronization. 

Braking torque ܯ௙ has been applied to each rotor successively to estimate the influence of 
friction experimentally. 

Fig. 3 shows a relative position of the debalances, when the braking torque is applied to the 
left rotor. Increase in braking moment leads to decrease in the mutual phase angle ߙ down to zero. 

If the braking torque is applied to the right rotor, the mutual phase angle ߙ  increases  
(see Fig. 4). 

So, the difference in the phase angles of disbalances can be explained by a higher friction 
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torque in the right-hand engine compared to the left-hand one. 
Numerical analysis of the influence of friction has been carried out based on mathematical 

model described in [18]. 

 
Fig. 2. Relative position of the debalances 

 
Fig. 3. Relative position of the debalances: additional friction torque applied to the left-hand rotor 

 
Fig. 4. Relative position of the debalances: additional friction torque applied to the right-hand rotor 

Fig. 5 shows results of calculation of the mutual phase shift between the disbalances as a 
function of friction torque at the same frequency of 29 Hz, as in the experiment. Zero phase 
difference corresponds to the synchronized rotation of debalances when the platform oscillates in 
vertical direction only. This synchronized rotation mode could be achieved only when friction 
torques in the supports of the rotors are equal. Any difference in these friction torques leads to a 
non-synchronous mode of rotation, so the unidirectional excitation mode appears to be disrupted. 
At the same time, the greater is the difference in frictional torques, the greater is the difference in 
phases of debalances. 

Note that the described phenomenon of phase angles difference of self-synchronized exciters 
can be used in motors diagnostics. 
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Fig. 5. Influence of the friction torque on the difference in phase angles of disbalances 

4. Analysis of dynamics features 

Detailed analysis of the experimental and theoretical frequency response obtained in [19, 20] 
showed that oscillations at above-resonant frequencies of vertical oscillations are represented by 
unstable chaotic motions. This instability can be seen in frequency response characteristic as a 
jump (see Fig. 6, where the solid line (curve 1) represents numerical simulation result, and the 
dotted line (curve 2) represents the experimental results). Starting from about 34 Hz, stable 
oscillations regain in the system with a new type of synchronization of exciters, which is 
characterized by a relative phase shift ߙ = 180°. At the same time, the vertical component of the 
exciting force disappears and there are scarcely any vertical oscillations of the platform’s center 
of mass (note that the vertical movement of the platform both in numerical simulation and in 
experiment is determined by the position of the center of mass). As a result, the phase shift ߝ 
between the vertical oscillations of the platform and the exciting force in the range from the second 
resonant frequency to the third resonant frequency can’t be determined, as it is seen from the phase 
calculation results (see Fig. 7). In the frequency range above the third resonant frequency, another 
type of synchronization with relative phase shift ߙ = 0° between disbalances occurs. It again leads 
to the appearance of vertical oscillations with phase shift ߝ = 180°. Note that, when approaching 
to the second resonant frequency, the phase shift increases monotonically, but the value of 90° 
can’t be reached because of the abrupt jump into the above-resonant region. This jump is caused 
by nonlinearity of the interaction between the oscillating system and the exciter of limited power. 

 
Fig. 6. Frequency response for vertical oscillations 

Described dynamics features near the resonance are also related to slip in AC motors. Fig. 8 
demonstrates experimentally obtained debalance rotation frequency dependence on the motors 
power supply frequency. In non-resonance regions this dependence is linear. But when 
approaching to resonances, increase in power supply frequency leads to no change in motor speed. 
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This is due to slip effect in the AC motors and their limited power. Further increase in power 
supply frequency leads to significant change in motor rotation speed. This is mostly evident in the 
region of the second resonant frequency which corresponds to vertical oscillations mode. The 
range of nonlinear motors rotation speed dependence on power supply frequency correlates with 
the instability zone observed at the frequency response and phase shift plots. 

 
Fig. 7. Phase shift between vertical oscillations and vertical exciting force 

 
Fig. 8. Rotors rotation speed as a function of power supply frequency 

5. Control system 

The previously proposed in [15] control algorithm for automatic tuning and resonant mode 
maintaining takes into account possible changes in the mass of the system, which leads to a change 
in the resonant frequency. Phase shift ε between vertical oscillations of the platform and vertical 
component of disturbing force, determined in steady state, is taken as the main controlled 
parameter that determines the oscillation mode of the whole system. The criterion for resonant 
mode achieving is the value of the phase shift ߝ = 90°. 

To determine the change in power supply frequency, required to adjust the system to resonant 
mode, dynamic portrait conception has been developed [15]. Dynamic portrait is relationship 
between three system parameters: phase shift, power supply frequency, and natural frequency of 
the system (or mass, if we consider it as a changing parameter of the system). Dynamic portrait 
can be represented graphically as a three-dimensional surface. Dynamic portrait for a particular 
machine supposed to be derived from the solutions of corresponding system Eq. (1). Thus, the 
shape of the surface depends on the parameters of the machine, while each point of the surface 
represents the dynamic state of the machine with parameters corresponding to the coordinates of 
the point. 

Power supply frequency required to adjust the system to resonant mode could be determined 
using dynamic portrait in two steps. In the first step the unknown natural frequency of the system 
is determined. In the second step, power supply frequency corresponding to resonant mode is 
determined, using the value found in the first step. 
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The revealed features of the system dynamics in the resonance region require following 
changes in the control algorithm. First of all, it is necessary to take into account that abrupt jump 
into the above-resonant region occurs before the phase shift value ߝ reaches 90°. Preliminary 
calculations showed that this abrupt jump usually occurs in the range ߝ∗ = [81°, 87°] depending 
on the parameters of the system. So, the control algorithm needs using the indicated range of ߝ∗ 
as a criterion for resonant mode, instead of ߝ = 90°. Moreover, the algorithm must take into 
account the uncertainty of the phase shift ߝ after abrupt jump into above-resonant region that leads 
to the gap in the dynamic portrait. In real conditions, this uncertainty does not let to measure 
system parameters using dynamic portrait. 

In the case when abrupt jump into above-resonant region occurs due to tuning to a new 
resonant mode or after the system mass changes, it is necessary to return to the previous known 
stable below-resonance mode and continue tuning from this state. Thus, the modified algorithm 
works in the following way. 

The control cycle begins with measurement of oscillations and angular positions of debalances, 
which are used to compute current value of phase shift ߝ. Then it is checked if oscillations of the 
system are stable. Oscillations supposed to be unstable if variance of phase shift values ∆ߝ on 
selected time interval exceeds some predetermined value (1° for instance). In this case, a period 
of staying in unstable mode is checked. If this period exceeds some selected threshold value, the 
system returns to the previous below-resonant state. This state is defined by the minimum 
allowable resonant frequency of vertical oscillations, which is determined by the known maximum 
permissible mass of the entire system. If a stable oscillating mode is detected, current value of 
phase shift is checked, which indicates if the machine is in above-resonant mode or in  
below-resonant mode. If the machine appears to be in the above-resonant mode, it sets to the 
below-resonant mode. In the below-resonant mode tuning criterion is checked for the  
near-resonant mode (ߝ∗ = [81°, 87°]). If this resonant criterion is satisfied, the control cycle 
continues to be executed to track possible changes. Otherwise, new power supply frequency value 
is computed using dynamic portrait of the system. After that, the computed power supply 
frequency value is set using a controlled frequency converter. 

6. Simulation results 

To test the efficiency of the proposed control system, numerical simulation has been carried 
out, supposing mass of the system varies according to the piecewise law shown in Fig. 9. The 
simulation was carried out with parameters of the model given in [18, 20]. 

Fig. 10-12 show diagrams of vertical oscillations of the platform, power supply frequency and 
phase shift. At time ݐ = 0, the system starts to oscillate with power supply frequency of 55 Hz in 
below-resonant mode. Control system tunes the oscillating system into the resonant mode in 6 
regulation steps. In this case, the phase shift reaches ߝ = 83°. At time ݐ =  ଵ, mass of oscillatingݐ
system decreases abruptly (see Fig. 9), which leads to increase in resonant frequency, so the 
system appears in below-resonant mode again. Control system performs resonant tuning in 7 
regulating steps, phase shift reaches ߝ = 81°. At time ݐ =  ଶ, mass of oscillating system increasesݐ
significantly, which leads to decrease in resonant frequency, so the system appears in 
above-resonant mode. This transition is accompanied by chaotic changes in phase shift (Fig. 12). 
In accordance with the modified algorithm, at first oscillating system is re-tuned to below-resonant 
mode with power supply frequency of 55 Hz, and then resonant tuning is performed in 6 steps 
with a phase shift ߝ = 83°. At time ݐ =  ଷ, mass of oscillating system increases abruptly again soݐ
the system appears in above-resonant mode again. Resonant tuning is performed in the same way 
as on the previous stage. 

Thus, regardless of mass changes (increase or decrease), resonant tuning is performed in 6-7 
regulation steps. Note that relatively high delay between regulation steps is caused by slow decay 
of the transient processes due to small dissipation in the system. 
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Fig. 9. Changes of mass of the system 

 
Fig. 10. Vertical oscillations of the center of mass 

 

 
Fig. 11. Supply frequency ௘݂ሺݐሻ  

Fig. 12. Phase shift ߝሺݐሻ 
7. Conclusions 

Thus, as a result of theoretical and experimental analysis of dynamics of oscillating system 
with self-synchronizing unbalanced exciters, we have established the influence of friction torques 
in supports of the exciters on their self-synchronization. 

There has been found a frequency range where a phase shift between vertical oscillations and 
vertical component of exciting force cannot be determined. The problem is caused by absence of 
vertical oscillations of system’s center of mass, due to abrupt jump into the above-resonant region 
and changes in the type of synchronization. 

It has been found that near the second resonance, an abrupt jump of oscillation occurs at phase 
shift value less than 90° due to nonlinear interaction between the vibrational system and limited 
power exciters. The value of the phase shift when the abrupt jump occurs depends on parameters 
of oscillatory system. 

Such behavior of the system results in a gap in frequency response characteristic, which makes 
it impossible to use the phase shift as a controlled parameter in the control system in this frequency 
range. 

Taking into account these newly discovered phenomena, a modification of the algorithm for 
resonant tuning has been carried out. The modification consists in transferring the system from 
the unstable above-resonant mode to the certain stable below-resonant mode. 

This research allows to expand the control system operating range, as well as to increase 
resonant tuning stability. 
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