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Abstract. In order to further extend the effective isolation range of the quasi-zero stiffness (QZS) 
platform, the vibration isolation performance of the chaotic interval is improved. For a class of 
self-design quasi-zero-stiffness (QZS) vibration isolation platform, starting with chaotic motion 
of the non-linear vibration isolation system, the jumping interval is eliminated by means of 
transient chaos phenomena. The control method of damping increase is proposed in combination 
with the application of the Von der Pol Plane, which can make the jumping-down frequency to be 
decreased below the external excitation frequency, thus the effective isolation range of vibration 
isolation platform can be extended, and a lower isolation frequency can be obtained. Research 
shows that, when the solution of the motion equation of the platform system falls to resonant 
branch led by certain initial conditions, the resonant amplitude response will jump to the non-
resonant branch by transient damping increase control method, which the removal time is 
determined by the Von der Pol Plane, hence making the platform system obtain the ideal vibration 
isolation performance. The research results have a significant importance for improving the low 
frequency and ultra-low frequency vibration isolation effect of such platforms, which lays a 
foundation for the popularization and engineering application, and can also provide a reference 
for control of other nonlinear vibration system. 
Keywords: non-linear vibration isolation, chaotic motion, jumping-down frequency, Von der Pol 
Plane, amplitude-frequency characteristic, quasi-zero-stiffness (QZS). 

1. Introduction 

The existing researches have proved that the parallel mechanism has the advantages of 
compact structure, good rigidity and strong load bearing capacity, and it can be applied to 
multi-dimensional vibration isolation field [1, 2]. As a non-linear vibration isolation system, the 
QZS vibration isolation platform based on a parallel mechanism, a research focus at present in the 
field of vibration isolation, has outstanding performance in solving the problems in low frequency 
and ultra-low vibration isolation [3-6]. For example, reference [3] proposed a nonlinear magnetic 
vibration isolator with quasi-zero-stiffness characteristic; reference [4] proposed a quasi-zero 
stiffness mechanism using inclined linear springs; reference [5] proposed a torsion quasi-zero 
stiffness vibration isolator; reference [6] proposed a multi-direction vibration isolation with 
quasi-zero stiffness by employing geometrical nonlinearity. This kind of vibration isolation 
platform has the excellent characteristics of “high static low dynamic”, which means high static 
stiffness and low dynamic stiffness. It can both guarantee sufficient static load bearing capacity, 
and make the dynamic stiffness theoretically tend to zero, which perfectly meet the requirements 
of low frequency and ultra-low frequency vibration isolation [7-9]. For example, reference [7] 
shows that zero stiffness can be achieved under imperfect conditions, and verifies that the 
proposed isolator can handle a weight ranging from 0 to 6 kg, and an external excitation with the 
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frequency as low as 2.3 Hz can be attenuated; reference [8] show that the quasi-zero stiffness 
mechanism achieves low stiffness without having a large static deflection at the static equilibrium 
position; reference [9] shows that the dynamic stiffness of the proposed vibration isolator at the 
static equilibrium position is zero, which can offer a good effectiveness of isolation for low 
excitation frequencies. 

However, none of those references solve the vibration isolation problem of quasi-zero stiffness 
platform in the chaotic region. Among them, reference [3] mentioned the jump-down frequency, 
namely the starting frequency of isolation for a nonlinear vibration isolator, and it concluded that 
the peak value of the transmissibility curve is effected by the excitation force and the damping; 
reference [5] shows that the nonlinear QZS vibration isolation system is effective only for the case 
when excitation frequencies exceed the jump down frequency, and conclude that the jump down 
frequency reduces with the increase in damping, but increases as the excitation amplitude 
increases for the proposed torsion quasi-zero stiffness vibration isolator; reference [8] shows that 
a good isolator should simultaneously achieve low peak transmissibility and wide isolation range, 
while the peak transmissibility of the compact quasi-zero-stiffness isolator can be readily 
attenuated by adding a damper, and the isolation range depends on the physical parameters of the 
isolator; reference [9] shows that the jump-down frequency occurs at the undamped natural 
frequency of the linear system when the parameters of the nonlinear system are adjusted properly. 
In addition, reference [10] also shows that such platforms contain unstable area, while the point 
(𝑈෡, 𝑄) is within the range of instability, the disturbance increases with respect to time; reference 
[11] shows that the jump-down frequency increases as the excitation amplitude increases, and the 
jump-down frequency is very sensitive to the variation of damping. Increasing damping shortens 
the resonance branch shapely, and even eliminates it, but makes the isolation performance worse. 
However, the references give no solution to the problem. 

Aiming at how to solve the vibration isolation problem of quasi-zero stiffness platform in the 
chaotic interval or unstable interval, reference [12] demonstrates that the time-delay active control 
devices in the horizontal direction significantly improve the isolation effect in the vertical and 
horizontal directions of the proposed MDQZS-VI by reducing the natural frequencies and resonant 
peak through choosing appropriate values of structural parameters and using time-delay active 
control; reference [13] proposed a novel idea of initial value control based on the analysis of 
attraction basins for coexistent attractors, which would be an effective way to break the obstacle 
of frequency jump phenomena and multi-solutions coexistence by controlling the system into a 
desired motion with a small vibration amplitude. 

In order to overcome the difficult problem of low frequency vibration isolation, a new vibration 
isolation platform is designed based on the theory of parallel mechanism, and its dynamic equation 
is derived. The vibration isolation platform has the excellent characteristics of “high static low 
dynamic”, which resolve the contradiction between low frequency vibration isolation and load 
capacity. The parameter matching and displacement transfer characteristics of the vibration 
isolation platform have been carried out in the early stage [2, 14]. Starting from the chaotic motion 
of the nonlinear vibration isolation system, this paper proposes a damping increase control method 
to improve the vibration isolation performance of the vibration isolation platform in the chaotic 
interval. The vibration isolation performance of the platform is studied emphatically, including 
the elimination of the jumping interval by means of transient chaos phenomena and the reduction 
of jumping-down frequency, which is decreased below the external excitation frequency as per 
the damping increase control method to extend the effective isolation range. The validity of the 
control method is proved by virtue of Von der Pol Plane evaluation. The research results show 
that the control method of damping increase can further extend the effective isolation range of the 
platform, a lower isolation frequency can be obtained, to improve the low-frequency vibration 
isolation effect of the platform. 
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2. Physical model and dynamic equation of new QZS vibration isolation platform 

2.1. Physical model of platform  

The new QZS isolation vibration platform, designed by our research team, is mainly composed 
of upper and lower springs, which provide negative and positive stiffness respectively. The 
vibration isolation platform is able to possess quasi-zero stiffness near the static equilibrium 
position by reasonable arrangement of the position of springs and appropriate matching of the 
system parameters [14]. At the same time, the flexible adjustment of stiffness and damping of the 
vibration isolation platform enables it to regain quasi-zero stiffness near the static equilibrium 
position by adjusting the stiffness and damping coefficients when the mass of the isolated object 
is changed, to improve the versatility of the vibration isolation platform. 

 
a) Static equilibrium position 

 
b) Initial position 

Fig. 1. Physical model of QZS isolation vibration platform:  
1 – stage, 2 – rack, 3 – elastic vibration reduction component, 4 – hinge, 5 – position limiter 

As shown in Fig. 1, the QZS isolation platform consists of five parts: 1 – stage, 2 – rack,  
3 – elastic vibration reduction component, 4-hinge, 5- position limiter. The isolated object is 
installed on the stage. The rack is used to install components and parts. The vibration reduction 
component is intended to mitigate impact and external vibration excitation. The hinge ensures 
flexible motion between the vibration reduction component and the rack. The position limiter 
prevents from a damage caused by overload. The vibration reduction component consists of a 
damper and elastic elements. The damping of the damper can be adjusted according to the mass 
of the isolated object. In the static equilibrium position, the upper spring of the elastic element is 
in the tensional working state, offering vertical negative stiffness, while the lower one is in the 
compressed working state, offering vertical positive stiffness. The original length of each spring 
and preload of the isolation platform can be flexibly adjusted to enhance the versatility and 
controllability of the platform. 

2.2. Static equation of platform 

A simplified vertical mechanical model of the vibration isolation platform is shown in Fig. 2. 
In the figure, 𝑏 and 𝑎 are the distances from the hinge centers of the upper and lower springs and 
the outer frame to the axis of the vibration reduction platform, respectively. The displacement 𝑥 
of the initial position is defined as the vertical displacement of the intersection point 𝑂 of the upper 
and lower springs. 𝐻 represents the vertical distance between 𝑂௔ and 𝑂௕, the centers of upper and 
lower platforms. ℎ is the vertical distance between the initial top intersection 𝑂 of the inclined 
springs and the static equilibrium position, where the platform starts to have quasi-zero stiffness, 
assuming that the static equilibrium position of the vibration isolation platform coincides with the 
center 𝑂௕. 𝐿௕ and 𝐿௔ are the original lengths of the upper and lower springs respectively when the 
top intersection point 𝑂 of the inclined springs is in the initial position. 

As shown in Fig. 2, the lower spring with the stiffness 𝑘௔ and the upper one with the stiffness 
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𝑘௕ intersect at the point 𝑂. Both the upper and lower springs are slightly compressed. With the 
vertical static force 𝑓 acting at the initial position 𝑂, the relationship between the total elastic 
recovery force 𝐹 and the displacement 𝑥 of the vibration isolation platform is given by: 𝐹 = 3𝑘௔(𝐿௔ − 𝑙௔)sin𝑎 + 3𝑘௕(𝐿௕ − 𝑙௕)sin𝑏, (1) 

where: 

sin𝑎 = 𝐻 + ℎ − 𝑥ඥ𝑎ଶ + (𝐻 + ℎ − 𝑥)ଶ ,   sin𝑏 = ℎ − 𝑥ඥ𝑏ଶ + (ℎ − 𝑥)ଶ,    𝑙௔ = ඥ𝑎ଶ + (𝐻 + ℎ − 𝑥)ଶ,     𝑙௕ = ඥ𝑏ଶ + (ℎ − 𝑥)ଶ,  

which are the working lengths of upper and lower springs respectively when the  
displacement is 𝑥. 

 
Fig. 2. Vertical mechanical model of vibration isolation platform 

So, the Eq. (1) can be expressed as: 

𝐹 = 3𝑘௔(𝐻 + ℎ − 𝑥) ቆ1 − 𝐿௔ඥ𝑎ଶ + (𝐻 + ℎ − 𝑥)ଶቇ + 3𝑘௕(ℎ − 𝑥) ቆ1 − 𝐿௕ඥ𝑏ଶ + (ℎ − 𝑥)ଶቇ. (2) 

With the vertical displacement 𝑦 representing the displacement of the intersection point 𝑂 
from the static equilibrium position of the vibration isolation platform, that is the position of 𝑂௕, 
then the Eq. (2) can be transformed into: 

𝐹 = 3𝑘௔(𝐻 + 𝑦) ቆ1 − 𝐿௔ඥ𝑎ଶ + (𝐻 + 𝑦)ଶቇ + 3𝑘௕𝑦 ቆ1 − 𝐿௕ඥ𝑏ଶ + 𝑦ଶቇ. (3) 

When both sides of Eq. (3) are divided by 3𝑘௕𝐿௕ , the dimensionless force-displacement 
equation of the platform can be obtained: 

𝐹෠ = 𝜆൫𝐻෡ + 𝑦ො൯ ቆ1 − 𝐿෠௔ඥ(𝑎ොଶ + (𝐻෡ + 𝑦ො)ଶ)ቇ + 𝑦ො ⎝⎛1 − 1ට𝑏෠ଶ + 𝑦ොଶ⎠⎞, (4) 

where 𝑦ො = 𝑦/𝐿௕, 𝑎ො = 𝑎/𝐿௕, 𝑏෠ = 𝑏/𝐿௕, 𝐿෠௔ = 𝐿௔/𝐿௕, 𝜆 = 𝑘௔/𝑘௕, 𝐻෡ = 𝐻/𝐿௕, 𝐹෠ = 𝐹/3𝑘௕𝐿௕. 
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If we take the derivative of on both sides of Eq. (4), the dimensionless equation about stiffness 
can be expressed as follows: 

𝑘෠ = ቌ1 − 𝑏෠ଶ(𝑏෠ଶ + 𝑦ොଶ)ଷଶቍ + 𝜆 ቌ1 − 𝐿෠௔𝑎ොଶ(𝑎ොଶ + (𝐻෡ + 𝑦ො)ଶ)ଷଶቍ. (5) 

When a set of coefficients is given, the force-displacement curve of the vibration isolation 
platform can be got, as demonstrated in Fig. 3. It can be seen that the platform displays stable 
quasi-zero stiffness within a small range when 𝑦ො = –0.75 

 
Fig. 3. Force-displacement curve of platform under selected parameters 

2.3. Dynamic equation of platform 

It is necessary to simplify Eq. (4) for the convenience of dynamic calculation and analysis. 
Consequently, the Eq. (4) is extended at point 𝐴  (shown in Fig. 4), that is equals to –0.75, 
according to the definition of Taylor series. The former three orders are kept. So, it can be 
expressed: 

𝐹෠ = 𝐹෠(−0.75) + 𝐹෠ᇱ(−0.75)𝑦ො + 𝐹෠ᇱ′(−0.75)2! 𝑦ොଶ + 𝐹෠ᇱ′′(−0.75)3! 𝑦ොଷ. (6) 

According to Eq. (4) and (5), the first derivative of elastic recovery force 𝐹  at point 𝐴 is 𝐹෠ᇱ(−0.75) = 𝑘෠(−0.75) = 0, the second derivative is 𝐹෠ᇱ′(−0.75) = 𝑘෠ᇱ(−0.75) = 0, and the third 
one: 

𝐹෠ᇱ′′(−0.75) = 3𝑏ସ − 12𝑏ଶ𝑦ොଶ(𝑏ଶ + 𝑦ොଶ)଻ ଶൗ + 3𝜆𝐿௔𝑎ସ − 12𝜆𝐿௔𝑎ଶ(𝐻 + 𝑦ො)ଶ(𝑎ଶ + (𝐻 + 𝑦ො)ଶ)଻ ଶൗ   
     = 3𝑏ସ − 6.75𝑏ଶ(𝑏ଶ + 0.75ଶ)଻ ଶൗ + 3𝜆𝐿௔𝑎ସ − 12𝜆𝐿௔𝑎ଶ(𝐻 + 0.75)ଶ(𝑎ଶ + (𝐻 + 0.75)ଶ)଻ ଶൗ .  (7) 

So, the approximate elastic recovery force 𝐹 can be presented as: 

𝐹෠ = 𝐹෠(−0.75) + 𝐹෠ᇱ′′(−0.75)3! 𝑦ොଷ. (8) 

If to set: 𝐹෠ଵ = 𝐹෠ − 𝐹෠(−0.75). (9) 



2976. IMPROVEMENT OF VIBRATION ISOLATION PERFORMANCE OF QZS PLATFORM IN CHAOTIC INTERVAL BASED ON DAMPING INCREASE 
CONTROL METHOD. PEICHENG SHI, PEILEI SHI, GAOFA NIE, YE TANG, DAOYUAN PAN 

3014 JOURNAL OF VIBROENGINEERING. DECEMBER 2018, VOLUME 20, ISSUE 8  

Then: 

𝐹෠ଵ = 𝐹෠ᇱ′′(−0.75)6 𝑦ොଷ = 𝑦ොଷ6 ቆ 3𝑏ସ − 6.75𝑏ଶ(𝑏ଶ + 0.75ଶ)଻ ଶൗ + 3𝜆𝐿௔𝑎ସ − 12𝜆𝐿௔𝑎ଶ(𝐻 + 0.75)ଶ(𝑎ଶ + (𝐻 + 0.75)ଶ)଻ ଶൗ ቇ .               (10) 

Inclusion of the third derivative only in Eq. (10) ensures the convenient of analysis of dynamic 
performance of the vibration isolation platform. The error between Eq. (10) and (4) is shown in 
Fig. 4. 

 
Fig. 4. Error between approximate force-displacement curve and accurate one 

It can be seen from Fig. 4 that the approximate curve largely coincides with the accurate one 
in the interval (–2.4, –1.3). When the intersection point of the spring vibrates near point 𝐴 in the 
small range, the approximate curve coincides exactly with the accurate one, making it feasible to 
replace the accurate Eq. (4) of elastic recovery force with the approximate Eq. (10) in the range 
of small vibration. 

It was supposed that the vibration isolation platform slightly vibrates in small range near point 
A, where the stiffness tends to zero. The simplified dynamic model of the platform is shown in 
Fig. 5. 

 
Fig. 5. Dynamic model of platform 

Under the simple harmonic excitation condition, the approximate force-displacement equation 
of the platform can be presented as follows: 𝐹෠ଵ = 𝛾𝑦ොଷ, (11) 

where the stiffness of the system: 

𝛾 = 16 ቆ 3𝑏ସ − 6.75𝑏ଶ(𝑏ଶ + 0.75ଶ)଻ ଶൗ + 3𝜆𝐿௔𝑎ସ − 12𝜆𝐿௔𝑎ଶ(𝐻 + 0.75)ଶ(𝑎ଶ + (𝐻 + 0.75)ଶ)଻ ଶൗ ቇ.  
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Furthermore, the Eq. (11) can be changed to Duffing equation that contains only non-linear 
terms to represent the force-displacement equation of the vibration isolation platform [15-17]. It 
can be expressed as follows: 𝑥ሷ෠ + 2𝜁𝑥ሶ෠ + 𝛾𝑥ොଷ = 𝐹෠cosΩ𝜏,    (12) 

where 𝑥ො = 𝑥/𝐿௕, 𝜁 = 𝑐𝜔଴ 2𝑘௔⁄ , 𝜔଴ଶ = 𝑘௔ 𝑚⁄ , 𝜏 = 𝜔଴𝑡, Ω = 𝜔 𝜔଴⁄ , 𝐹෠ = 𝐹/3𝑘௕𝐿௕. 

3. Amplitude-frequency characteristic of platform 

By using the harmonic balance method, the same order harmonic term on both sides of the 
differential equation has the same coefficient. In the meanwhile, only the predominant excitation 
frequency is considered but with ignoring higher harmonic terms [18]. The periodic response of 
Eq. (12) is as follows: 𝑥ො(𝜏) = 𝐴sin(Ω𝜏 + 𝜃), (13) 

where 𝐴 is the system response amplitude, 𝜃 represents the response phase of the system, is the 
harmonic excitation frequency. 

Upon substitution of Eq. (13) into Eq. (12), it can be got: 

൞൬34 𝛾𝐴ଷ − 𝐴Ωଶ൰ cos𝜃 − 2𝐴𝜁Ωsin𝜃 = 𝐹෠,−2𝐴𝜁Ωcos𝜃 − ൬34 𝛾𝐴ଷ − 𝐴Ωଶ൰ sin𝜃 = 0. (14) 

Upon the elimination of phase 𝜃 in Eq. (14), the amplitude-frequency characteristic equation 
of the platform can be obtained: 

൬34 𝛾𝐴ଷ − 𝐴Ωଶ൰ଶ + (2𝜁𝐴Ω)ଶ = 𝐹෠ଶ.       (15) 

With the stiffness ratio, damping ratio, excitation force amplitude = 0.05, the vibration 
amplitude-frequency characteristic curve of the platform can be acquired by using the command 
ezplot() of Matlab implicit function, as shown in Fig. 6. 

As can be seen in Fig. 6, when the excitation frequency changes in different directions, the 
system amplitude response is as follows: 

1) When the excitation frequency gradually increases from zero. 
When the excitation frequency increases from zero, the response amplitude changes are shown 

in the green arrow line in Fig. 6. The response amplitude first increases along the upper branch, 
namely the resonant branch: starting from point 1, via point 2, then reaching point 3, which 
corresponds to the maximum amplitude and the jumping-down frequency Ωௗ.That is to say, as the 
excitation frequency continues to increase, the response amplitude jumps directly to point 4 on the 
lower branch, non-resonant branch, finally to point 5 and extends infinitely.  

2) When the excitation frequency gradually decreases from infinity to zero. 
When the excitation frequency decreases from high frequency to low frequency, the changing 

tendency of the response amplitude is shown in the blue arrow line in Fig. 6. The response 
amplitude first increases along the non-resonant branch: starting from point 5, via point 4, then 
reaching point 6, which corresponds to the jumping-up frequency Ω௨ . That is to say, as the 
excitation frequency continues to decrease, the response amplitude jumps directly to point 2 on 
the resonant branch, finally changes to point 1 along the resonant branch.  

In summary, only when the external excitation frequency is larger than Ωௗ then the system 
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amplitude response will certainly change along the non-resonant branch. The excitation 
frequencies in the jumping range cause in uncertain amplitude-frequency response of the system, 
which may fall to the resonant branch curve with a large amplitude or on the non-resonant curve 
with a small amplitude. It is obvious that only when the amplitude frequency response changes 
along the non-resonant branch, the system has vibration isolation characteristics. 

In general, to make the solution of its dynamic differential equation tend to the non-resonant 
branch with a small amplitude, it is required that the excitation frequency is larger than the 
jumping-down frequency for the non-linear vibration isolation system. However, it can be seen in 
Fig. 6 that the 𝑄𝑍𝑆  isolation system, starting from the jumping-up frequency, already has 
excellent vibration isolation capability. As a result, the extension of the available vibration 
isolation interval in the system to jump-up frequency Ω௨ is an effective measure to improve the 
low frequency vibration isolation capability of the system. 

 
Fig. 6. Amplitude-frequency characteristic curve of platform.  Ω௨ is jumping-up frequency and Ωௗ is jumping-down frequency 

4. Jumping frequency of system 

4.1. Jumping-down frequency 

By expanding the amplitude-frequency characteristic Eq. (15), it can be obtained: 𝐴ଶΩସ + ൬4𝜁ଶ𝐴ସ − 32 𝛾𝐴ସ൰ Ωଶ + 916 𝛾ଶ𝐴଺ − 𝐹෠ଶ = 0. (16) 

If Eq. (16) is regarded as the equation about, using the formula of root, we can get: 

Ωଵ,ଶ = 12 ඨ3𝛾𝐴ଶ − 8𝜁ଶ േ 4𝐴 ට4𝜁ସ𝐴ଶ − 3𝛾𝐴ସ𝜁ଶ + 𝐹෠ଶ. (17) 

In an actual system, the damping ratio 𝜁 is far less than one, and the excitation frequency Ω 
can be only positive. As a result, based on the actual meaning, the expression in the radical sign 
must be non-negative. So: 4𝜁ସ𝐴ଶ − 3𝛾𝐴ସ𝜁ଶ + 𝐹෠ଶ ൒ 0. (18) 

The amplitude-frequency characteristic curve in Fig. 8 shows that the frequency corresponds 
to the maximum amplitude point is the jumping-down frequency Ωௗ, so Ωଵ = Ωଶ. That is: 4𝜁ସ𝐴ଶ − 3𝛾𝐴ସ𝜁ଶ + 𝐹෠ଶ = 0. (19) 
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Based on the formula of root, the maximum root, namely the maximum amplitude, of Eq. (19) 
can be attained: 

𝐴୫ୟ୶ = ඨ2𝜁ଷ + ඥ4𝜁଺ + 3𝛾𝐹෠ଶ3𝛾𝜁 . (20) 

As the damping ratio 𝜁 is far less than one, then 4𝜁଺ ≪ 3𝛾𝐹෠ଶ, so the approximate maximum 
amplitude can be expressed: 

𝐴୫ୟ୶ ≈ ቆ 𝐹෠ଶ3𝛾𝜁ଶቇଵସ. (21) 

By substituting the approximate 𝐴୫ୟ୶ into quadratic equation with one unknown about Ωଶ, 
that is Eq. (16), the approximate jumping-down frequency can be got: 

Ωௗ = 1ඥ2𝜁 ඩඨ𝜁଺ + 34 𝛾𝐹෠ଶ − 3𝜁ଷ. (22) 

Furthermore, since 4𝜁଺ ≪ 3𝛾𝐹෠ଶ, it can be got: 

Ωௗ ≈ ቆ3𝛾𝐹෠ଶ16𝜁ଶ ቇଵସ. (23) 

It can be seen from Eq. (23) that the increase of the damping ratio 𝜁  brings about lower 
jumping-down frequency Ωௗ. 

4.2. Jumping-up frequency 

It shows that the change of the damping ratio exerts little influence to the jumping-up 
frequency [19]. The approximate value of the jumping-up frequency is obtained by setting 𝜁 = 0. 

With 𝜁 = 0, it can be found from the amplitude-frequency characteristic Eq. (16) that the 
amplitude corresponding to the jumping-up frequency Ω௨  is the solution of Eq. (16) when 𝑑Ω 𝑑𝐴⁄ = 0. It can be got: 

𝐴௨ = ቆ2𝐹෠3𝛾ቇଵ/ଷ. (24) 

By substituting of the approximate 𝐴௨ into the quadratic equation with one unknown about Ωଶ, 
which is Eq. (16), the approximate jumping-up frequency can be got: 

Ω௨ ≈ ቆ9𝐹෠√𝛾4 ቇଵ ଷ⁄ . (25) 

4.3. Influence of system damping control on jumping interval 

For the common non-linear vibration isolation system, the effective vibration isolation 
frequency is the external excitation frequency Ω that is larger than Ωௗ [20, 21]. That is to say, only 
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when the excitation frequency is not less than the jumping-down frequency the system obtains the 
satisfactory vibration isolation effect. From the text above, under harmonic excitation, the 
jumping-up frequency: 

Ωௗ ≈ ቆ3𝛾𝐹෠ଶ16𝜁ଶ ቇଵ ସ⁄ ,  

and jumping-down frequency: 

Ω௨ ≈ ቆ9𝐹෠√𝛾4 ቇଵ ଷ⁄ .  

The influence of the jumping-up and jumping-down frequency on the jumping interval is 
shown in Fig. 7. 

 
Fig. 7. Influence of damping ratio 𝜁 on jumping frequency 

It can be seen from Fig. 7 that, with the increase of the system damping ratio, the jumping-up 
frequency Ω௨  remains the same, while the jumping-down frequency Ωௗ  decreases obviously, 
indicating the great sensitivity of the jumping-down frequency Ωௗ of the system to the system 
damping ratio. Therefore, a control method is proposed to increase the system damping. By using 
the transient chaotic motion state in the jumping interval, the ideal result is realized that the 
amplitude response jumps from the resonant branch to the non-resonant one. Specific ideas are as 
follows: 

Under certain initial conditions, the increase control of damping ratio of the system makes the 
jumping-down frequency Ωௗ  gradually decrease, and ultimately to be less than the excitation 
frequency Ω so that the system response jumps to the non-resonant branch with small amplitude 
when it is on the resonant branch with a large amplitude. At this time, the large amplitude resonant 
motion of the system will appear to be in the transient chaotic state. The influence of non-resonant 
steady focus attraction makes the amplitude response tend to the non-resonant branch. 

In order to ensure that the system amplitude response of any initial value can fall to the 
non-resonant branch with a small amplitude, the removal time of damping is determined by the 
Von der Pol plane [22]. Specifically, the damping ratio of the system increases when there are 
some initial values on the resonant branch; the damping ratio is removed when all the initial values 
fall to the non-resonant branch with a small amplitude. After the transient state, the system will 
do simple harmonic vibration again, and the system response amplitude will fall to the 
non-resonant branch. In this way, the initial vibration isolation frequency of the platform can be 
reduced to the jumping-up frequency so that the effective low-frequency isolation interval is 
further expanded. 
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5. Effect of control of damping increase 

5.1. Application of Von der Pol plane 

Taking the system state at the control removal time as an initial condition, a new set of response 
expressions is used to describe the changing relationship between the system phase and amplitude 
with time. The expressions are as follows: ൜𝑥ො(𝜏) = 𝑎(𝜏)cosΩ𝜏 − 𝑏(𝜏)sinΩ𝜏,𝑥ሶ෠(𝜏) = −Ω(𝑎(𝜏)sinΩ𝜏 + 𝑏(𝜏)cosΩ𝜏), (26) 

where 𝑎 and 𝑏 are the amplitude coefficients of harmonic waves. 
By substituting of Eq. (26) into Eq. (12), ignoring high order harmonic terms, the first-order 

differential equations with respect to the coefficients 𝑎 and 𝑏 can be expressed as follows: 

൞𝑎ᇱ = 𝑏Ω − 2𝑎𝜁 − 34Ω 𝛾𝑏(𝑎ଶ + 𝑏ଶ),𝑏ᇱ = −𝑎Ω − 2𝑏𝜁 + 34Ω 𝛾𝑎(𝑎ଶ + 𝑏ଶ) − 1Ω 𝑓መ. (27) 

The initial value under the initial condition where 𝑎(0) = 𝑦(0), 𝑏(0) = 𝑦′(0)/Ω is exactly 
the solution of the dynamic equation of the system on the Von der Pol plane. 

Under certain initial conditions, the damping is removed when the system amplitude response 
all tend to the non-resonant branch with a small amplitude by observing the solution curve (𝑎, 𝑏). 
For all initial conditions of the system, if the amplitude response has fully fallen to the 
non-resonant branch before removal of the damping control, then the amplitude response of the 
system will definitely fall to the non-resonant branch where the system attains the capability of 
vibration isolation after the removal of the damping control. 

5.2. Response of system in control of damping increase 

Under the simple harmonic vibration condition, the initial system condition is  (𝑥ො, 𝑥ሶ෠) = (0.01, 0), as shown in Fig. 8. When 𝜏 ∈ (0, 2000), the damping control has not yet been 
applied to the system, where the response amplitude reaches 0.1243. The large response amplitude 
indicates that the solution of the motion equation falls to the resonant branch with large amplitude, 
and the force transmissibility of the system as shown in Fig. 9. As the force transmissibility is 
larger than one, the vibration isolation system will bring about an increased amplitude, so the 
system will not attain vibration isolation capability, even worse, it will deteriorate the working 
environment of the isolated objects. 

The parameters of the vibration isolation system are shown in Table 1. 

Table 1. System parameters  
System parameters Initial values 

Damping 𝜁 0.01 
External excitation frequency Ω 0.25 

Excitation amplitude 0.3 
Non-linear term coefficient 𝛾 2 

In order to verify its effectiveness, damping control (𝜁 = 0.02) is applied to the system when 𝜏 = 2000. During this process, the change of system response is visually shown before and after 
the damping control is imposed. 

From the simulation time 𝜏 =  2000, the system, after the transient state, remains in the 
harmonic vibration state, but the vibration amplitude obviously changes: The system amplitude 
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has been greatly reduced as compared with that of the damping control is not applied. As shown 
in Fig. 8, after the damping control is applied when 𝜏 ∈ (2000, 4000), the system amplitude is 
reduced to 0.01609; the small response amplitude indicates that the system falls to the 
non-resonant branch with a small amplitude. The transmissibility 𝑇 = 0.08142, decreased by 
99.3 percent as compared with that before the damping control is applied, making the system has 
a very excellent vibration isolation ability. 

 
Fig. 8. Response of vibration isolation system with time 

In order to study whether the system state still meets the requirements of vibration reduction 
and isolation after the removal of damping control, the damping control of the system is removed 
from the simulation time 𝜏 = 4000 (restoring system damping ratio 𝜁 = 0.01). It can be seen from 
Fig. 8 that during the time 𝜏 ∈ (4000, 6000), the system still returns to the harmonic vibration state 
after the transient state. The system amplitude response, before and after the damping control is 
removed, does not change, and the response amplitude remains 0.016. In the range 𝜏 ∈ (4000, 6000), the response amplitude almost does not change, indicating that on the removal 
of the damping control, the amplitude response of the system still change along the non-resonant 
branch. 

 
Fig. 9. Transmissibility of system in different damping ratio 

As per Fig. 8, when the control damping increases, the maximum displacement of the system 
response |𝑥ො|୫ୟ୶ = 0.01609 , the maximum velocity ห𝑥ሶ෠ห୫ୟ୶ =  0.04 Therefore, all the points 
satisfying |𝑥ො|୫ୟ୶ ൑ 0.01609 and ห𝑥ሶ෠ห୫ୟ୶ ൑ 0.04 are the initial conditions of the QZS isolation 
system, that is to say, all the values in the red circle in Figure 10 can be used as the initial system 
conditions. The curves form two different areas under different initial conditions: 𝐷௨ (the area 
indicated by the dashed line) and 𝐷ௗ (the area indicated by the solid line). The two areas represent 
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the equations of system motion, namely the solutions of Eq. (2) are in the resonant and 
non-resonant branches. The dashed line in Fig. 10 means that the response of the system under the 
initial conditions will tend to a stable focal point 𝑂௨ (on the resonant branch); the solid line means 
that the system response under this initial condition will tend to a stable focal point 𝑂ௗ (on the 
non-resonant branch). If the system response is in the area indicated by the dashed line, namely 𝐷௨ the system vibration amplitude will vary along the resonance branch with a large amplitude 
before the system damping control is removed; if the system response is in the area indicated by 
the solid line, namely 𝐷ௗ the system vibration amplitude will vary along the non-resonant branch 
with a small amplitude. 

 
a) 𝜉 = 0.01 

 
b) 𝜉 = 0.02 

Fig. 10. Solutions of different damping ratio on Von der Pol plane when Ω = 0.25 

5.3. Effect evaluation of control of damping increase 

Supposing the external excitation frequency Ω = 0.25, the change is shown in Fig. 10 and in 
solutions of the system motion differential equation, Eq. (12), on the Von der Pol Plane under 
different damping ratio conditions. It can be concluded that: 1) When no damping control is 
applied to the system (𝜁 =  0.01, shown in Fig. 10(a)), only a half of the initial conditions 
eventually make the system amplitude fall to the non-resonant branch, the other make it fall to the 
resonant one. 2) When the damping control is applied to the system ( 𝜁 =  0.02, shown in 
Fig. 10(b)), all the initial conditions fall to area 𝐷ௗ, that is to say, all the initial conditions make 
the system amplitude fall to the non-resonant branch in the control of damping increase. Even 
though the damping is removed at this time, the system, after the transient state, must fall to the 
non-resonant branch with a small amplitude, which is caused by the fact that when the system 
damping is large enough, so the jumping-down frequency Ωௗ will be lower than the excitation 
frequency Ω, leading to instability of the large-amplitude resonant motion of the system, which 
makes the response fall to the non-resonant branch. Therefore, by appropriate damping control, 
all the system amplitude and frequency responses caused by external excitation frequency fall to 
the non-resonant branch. 

Assuming that the external excitation frequency Ω = 0.17, the change is shown in Fig. 11 and 
in the solutions of the system motion differential equation, Eq. (12), on the Von der Pol plane 
under different damping ratio conditions. In Fig. 11(a), the area tending to the stable focus 𝑂ௗ 
does not contain the system responses under all initial conditions. That shows that the system 
response under a certain initial condition may fall to the stable focus 𝑂௨ on the resonant branch, 
resulting in a loss of vibration isolation ability of the system. On the application of control of 
damping increase to the system (𝜁 = 0.02), the curves starting from all the initial conditions tend 
to the stable focus (shown in Fig. 11(b)). It is shown that at the excitation frequency, after the 
system damping is increased, all the solutions of the system differential equation of motion will 
be located in the non-resonant branch, and after removal of the damping control, the system can 
still remain on the non-resonant branch with a low amplitude, eventually achieving the purpose of 
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solutions of the system motion equation jumping from the resonant branch to the non-resonant 
one. 

 
a) 𝜉 = 0.01 

 
b) 𝜉 = 0.02 

Fig. 11. Solutions of different damping ratio on Von der Pol plane when Ω = 0.17 

To further illustrate the effectiveness of the proposed method, the effect of increased vibration 
damping is explored by the following amplitude-frequency response curve. As shown in Fig. 12, 
when the excitation frequency is Ω = 0.25, upon the increase of damping from 0.01 to 0.02, the 
jumping-down frequency of the blue amplitude-frequency response curve is less than the 
excitation frequency. So, the system amplitude will jump from the resonant branch to the blue 
non-resonant one. Since the blue non-resonant branch almost coincides with the non-resonant 
system branch, the red curve, before damping control is applied; the amplitude-frequency response 
curve of the system will tend to the original non-resonant branch after the damping control is 
removed. When the excitation frequency Ω = 0.23, the jumping-down frequency (Ωௗ = 0.24) of 
the blue amplitude-frequency response curve is still greater than the excitation frequency 
(Ω = 0.23), for which the damping increase is small. So, in order to make the excitation frequency 
greater than the jump frequency and to avoid the uncertainty of the amplitude response of the 
system, it is necessary to further increase the damping control. When the system damping ratio is 
increased to 0.03, the jumping-down frequency (Ωௗ = 0.18) of the purple amplitude-frequency 
characteristic curve in Fig. 12 is smaller than the excitation frequency (Ω = 0.23), then the 
damping control can be removed at this time. Similarly, when the excitation frequency Ω = 0.17, 
it is necessary to increase the damping to 0.04 before the damping control can be removed (shown 
in the green curve in Fig. 12). Therefore, different damping increases are applied to different 
excitation frequencies. Equipped with a flexible damping control mechanism, the QZS vibration 
isolation platform will always work in the non-resonant branch, which greatly improves the 
low-frequency vibration isolation performance of the platform. 

 
Fig. 12. Relationship between damping increase and excitation infrequency 
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Shi Peicheng finished the quasi-zero-stiffness (QZS) vibration isolation platform design and 
proposed the vibration isolation question in chaotic interval. Shi Peilei finished the physical model 
and dynamic equation of quasi-zero-stiffness (QZS) vibration isolation platform. Nie Gaofa 
finished the Amplitude-frequency characteristic and jumping frequency analysis of  
quasi-zero-stiffness (QZS) vibration isolation platform. Ye Tang finished the paper’s Section 5 by 
application of Von der Pol Plane. Pan Daoyuan finished the performance of quasi-zero-stiffness 
(QZS) vibration isolation platform in chaotic interval. 

6. Conclusions 

For a non-linear vibration isolation system, only when the excitation frequency is higher than 
its jumping-down frequency, the system can exhibit good low-frequency vibration isolation  
ability. The vibration isolation effect is uncertain when the excitation frequency is in the chaotic 
interval of the platform. To improve the vibration isolation performance of the vibration isolation 
platform in the chaotic interval, this paper proposes a damping increase control method. 

1) In order to ensure that the system has good vibration isolation performance when the 
vibration frequency falls to the chaotic interval, the damping increase control makes the 
jumping-down frequency less than the external excitation frequency, to avoid the chaotic interval. 
Thus, the effective vibration isolation range of the platform can be extended. 

2) The dynamic response of the platform jumps from the resonant branch with a high amplitude 
to the non-resonant branch with a small amplitude by the method proposed, which expands the 
effective vibration isolation interval as well as enhances the low-frequency vibration isolation 
performance. The validity of this method is proved by the application of the Von der Pol plane, 
which provides a theoretical basis for the removal time of damping control. 

3) The control method of damping increase can further extend the effective isolation range of 
the platform, a lower isolation frequency can be obtained, to improve the low-frequency vibration 
isolation effect of the platform.  
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