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Abstract. Compared with a traditional unilateral-driven large vibrating screen, the proposed 
dual-side excitation large vibrating screen (DELVS) has a simpler screen structure and less 
vibration mass, which might improve its reliability. A DELVS with metal cylindrical coiled 
springs is theoretically and experimentally studied in this paper. With the rotation considered, a 
fundamental three-degree-of-freedom (3-DOF) dynamic model for DELVS is established firstly. 
Then an elastic compression bar model method (ECBM) is proposed for transverse stiffness 
determination of a metal cylindrical coiled spring and applied into the numerical simulation of 
DELVS. Finally, an experimental test on a DELVS of 4.25 m×6.00 m is conducted. It is seen that 
numerical simulation with the proposed ECBM is more closely related to the experimental data, 
hence the accuracy of the proposed dynamic model of DELVS is enhanced. The conclusions may 
provide guidance on a design of a high-performance large vibrating screen. 
Keywords: dual-side excitation large vibrating screen, dynamic model, metal cylindrical coiled 
spring, transverse stiffness. 

1. Introduction 

A precise solid-solid separation or an effective solid-liquid separation is widely-used in 
mineral processing, coal preparation and other industrial processes. Take the vibrating screen in 
coal preparation for example. It accounts for 30 % of all equipment in coal mine [1, 2]. As shown 
in Fig. 1(a), the most common unilateral-driven large vibrating screen has a large vibration mass 
and demands huge exciting force yielded by two box-type exciters. Due to the effect of coupled 
load consisting of the intense excitation load initiated by exciters, the inertial load of screen 
structure and the impact load of the screening materials, the dynamic characteristics of such large 
vibrating screen are extremely complex, and structural damage such as beam fracture or lateral 
plate crack occurs frequently [3-4]. Therefore, the low reliability and short service life of the 
equipment can hardly meet the demand for large-scale screening. 

The dual-side excitation large vibrating screen (DELVS) proposed in Fig. 1(b) is regarded as 
having an advantage of a less vibration mass, for the reason that two vibration motors are adopted 
to replace the two box-type exciters for generating excitation force and to simplify the driven 
mechanism and screen structure [5]. Two vibration motors with eccentric blocks inside are 
mounted on the left and right lateral plate, respectively. The excitation force is yielded by rotation 
of the eccentric block. Note that each group of compression damping spring system of this large 
vibrating screen contains three outer and three inner metal cylindrical coiled springs (MCCS), 
which are mounted in a parallel manner. 

Proper dynamic model for mechanical design of a large vibrating screen is vital to ensure the 
reliability and stability of the screen operation. However, as screening performance depends on 
the stable oscillation in longitudinal vibration, many studies focused more on the longitudinal 
vibration than on the lateral vibration. Jiang at al. presented a set of dynamic equations governing 
the longitudinal motion of single-deck equal-thickness vibrating screen, but they didn’t give the 
numerical simulation of vibration response [5]. Aiming at a DELVS, Despotović et al. proposed 
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a technical solution to adjust the frequency and amplitude of vibration by a control system, and 
they determined the longitudinal amplitude-frequency characteristics of this vibrating screen 
without any dynamic model [6]. Baragetti proposed a dynamic model of a vibrating screen for the 
selection of inert materials in an asphalt plant [7]. Also, he conducted the dynamic analysis in 
order to proceed with the optimal design of the new modified screen [8]. However, the vibrating 
screens he considered is a traditional one similar with the unilateral-driven large vibrating screen. 
In this paper, the theoretical analysis of DELVS will be conducted after a three-degree-of-freedom 
(3-DOF) dynamic model established firstly. To verify the accuracy, numerical simulation and 
experimental study will be adopted, and among which, the key dynamic parameter, namely, the 
fundamental transverse stiffness of MCCS needs to be determined. To improve the accuracy of 
DELVS, we will propose a new transverse stiffness calculation method instead of a traditional 
method. 

 
Fig. 1. Two kinds of large vibrating screen: a) unilateral-driven large vibrating screen,  

b) dual-side excitation large vibrating screen (DELVS) 

2. Theoretical analysis of DELVS 

In this paper, the size of experimental DELVS is 4.25 m×6.00 m. Fig. 2 depicts the dynamic 
model of DELVS. Here a cartesian coordinate system is established at the center of mass (denoted 
by ܱ). When the eccentric blocks rotate symmetrically, the resultant force (denoted by ܨ) in  ݖ-direction (ݖ-axis) is zero. As ܨ has a certain angle, i.e., ߮ to the ݔ-direction (ݔ-axis), the screen 
structure experiences a synchronous horizontal and vertical vibration.  

Due to the large span between the compression damping spring system of the feeding end and 
the discharge end, the rotation around ݖ-axis might have a great influence on the horizontal and 
vertical motion. Thus, it is necessary to count the deformation component of the spring caused by 
rotation when we consider its elastic restoring force in horizontal and vertical direction [9, 10]. 
On this basis, a 3-DOF dynamic model for DELVS is presented in Fig. 2. It is established based 
on a traditional model for a vibrating screen, such as a unilateral-driven large vibrating screen 
[7, 8]. Assume that ݔ is the displacement of DELVS in ݔ-axis, ݕ is the displacement of DELVS 
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in ݕ-axis and ߠ is the rotation angle around ݖ-axis. The dynamic equations governing the DELVS 
will be derived using Lagrange’s equations as follows. 
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Fig. 2. Schematic of the 3-DOF DELVS model in the lateral plate view 

The kinetic energy (denoted by ܶ), the potential energy (denoted by ܷ) and the damping 
energy (denoted by ܦ) of the system are, respectively: 

ܶ = 12 ሶݔ)ܯ ଶ + ሶݕ ଶ) + 12 ሶߠܬ ଶ, (1)ܷ = 12 ൛݇௬ሾ(ݕ + ଶ(ߠଵܮ + ݕ) − ଶሿ(ߠଶܮ + ݇௫ሾ(ݔ + ݀ଵᇱ ଶ(ߠ + ݔ) − ݀ଶᇱ ܦଶሿൟ, (2)(ߠ = 12 ቄܿ௬ ቂ൫ݕሶ + ሶ൯ଶߠଵܮ + ൫ݕሶ − ሶ൯ଶቃߠଶܮ + ܿ௫ ቂ൫ݔሶ + ݀ଵᇱ ሶ൯ଶߠ + ൫ݔሶ − ݀ଶᇱ ሶ൯ଶቃቅ, (3)ߠ

where ܯ is the whole vibration mass of screen structure, ܬ is the rotational inertia of the screen 
structure around ݖ-axis. Besides, ܮଵ and ܮଶ are the horizontal distances from the center of mass to 
the center of parallel compression damping spring system approaching the feeding end and the 
discharging end, respectively. Meanwhile, ݀ଵᇱ  and ݀ଶᇱ  are the vertical distances from the center of 
mass to the places where springs of the feeding end and the discharge end contact with the screen 
structure, respectively. It should be noted that when the contact position is opposite to that of the ݔ-axis in Fig. 2, a negative value is supposed to be used. ݇௫ and ݇௬ are the transverse stiffness and 
longitudinal stiffness of parallel compression spring system located in both ends of DELVS, 
respectively. And ܿ௫  and ܿ௬  are the transverse damping constant and longitudinal damping 
constant of parallel compression spring system, respectively. 

The Lagrange equations for the coordinates of ݕ ,ݔ, and ߠ are, respectively, formulated to be: ݀݀ݐ ൬߲߲ܶݔሶ ൰ − ݔ߲߲ܶ + ݔ߲ܷ߲ + ݔ߲ܦ߲ = ݐ଴sin߱ܨ ⋅ cos߮, (4)

where ߱ and ܨ଴ are the synchronous angular speed of eccentric blocks driven by vibration motors 
and the magnitude of inertial excitation force, respectively: ݀݀ݐ ൬߲߲ܶݕሶ ൰ − ݕ߲߲ܶ + ݕ߲ܷ߲ + ݕ߲ܦ߲ = ݐ଴sin߱ܨ ⋅ sin߮, (5)݀݀ݐ ൬߲߲ܶߠሶ൰ − ߠ߲߲ܶ + ߠ߲ܷ߲ + ߠ߲ܦ߲ = ݐ଴sin߱ܨ ⋅ sin߮, (6)ܮ

where ܮ is the distance between inertial excitation force and the center of mass along x-axis 
direction. 
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From Eqs. (1) to (6) the dynamic equations have been derived. With a displacement response 
vector ܠ = ሾݔ; ;ݕ ሿߠ  and the corresponding velocity and acceleration response vectors ܠሶ ሷܠ , , 
dynamic equations for DELVS can be expressed in a matrix form: ܠۻሷ + ሶܠ۱ + ܠ۹ = ۴, (7)

where: 

ۻ = ൥ܯ 0 00 ܯ 00 0 ܬ ൩, 
۱ = ቎ 2ܿ௫ 0 ܿ௫(݀′ଵଶ − ݀′ଶଶ)0 2ܿ௬ ܿ௬(ܮଵ − ଶ)ܿ௫(݀′ଵଶܮ − ݀′ଶଶ) ܿ௬(ܮଵ − (ଶܮ ܿ௫(݀′ଵଶ + ݀′ଶଶ) + ܿ௬(ܮଵଶ + ଶଶܮ )቏, 
۹ = ቎ 2݇௫ 0 ݇௫(݀′ଵ − ݀′ଶ)0 2݇௬ ݇௬(ܮଵ − ଶ)݇௫(݀′ଵଶܮ − ݀′ଶଶ) ݇௬(ܮଵ − (ଶܮ ݇௫(݀′ଵଶ + ݀′ଶଶ) + ݇௬(ܮଵଶ + ଶଶܮ )቏, 
۴ = ൥ cos߮sin߮ܮsin߮൩ ⋅  ,ݐ଴sin߱ܨ
are the mass matrix, the damping matrix, the stiffness matrix and the time-dependent dynamic 
force matrix due to vibration motors, respectively. For a DELVS, vibration response of the screen 
structure can be obtained by the numerical solution of Eq. (7). 

3. Determination of parameters of DELVS 

In order to investigate the vibration of a DELVS and verify the feasibility of theoretical 
analysis above, the parameters of DELVS should be determined. These parameters contain the 
physical parameters of DELVS and the transverse stiffness of a MCCS.  

3.1. Physical parameters 

Generally, with a three-dimension geometrical model built and the corresponding materials 
defined in a three-dimensional modeling software, the center of mass for DELVS can be located 
accurately, as Fig. 3 shows. Then the physical parameters of DELVS for ۹ ,۴ ,ۻ can be gained 
and reported in Table 1. They are consistent with the parameters of the experimental apparatus 
which will be presented later. 

 
Fig. 3. Physical parameters of DELVS 
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Table 1. Physical dimensions and characteristics of DELVS ܯ  
(kg) 

  ܬ
(N·m2) 

 ଴ܨ
(kN) 

߮ 
(°) 

߱ 
(rad/s) 

 ଵܮ
(mm) 

 ଶܮ
(mm) 

݀ଵ 
(mm) 

݀ଶ 
(mm) 

 ܮ
(mm) 

7814.70 19257.27 256 73 104.07 2470.13 2761.44 -313.43 206.78 104.94 

Furthermore, the damping matrix ۱ should be determined as well. For a practical system, due 
to the various phenomena of energy consumption, it is difficult to construct an accurate damping 
matrix ۱. Hence, a commonly-used proportional damping method is adopted in this study, which 
means that the damping matrix is regarded as the linear combination of mass matrix and stiffness 
matrix, namely [11, 12]: ۱ = ۻߙ + (8) .۹ߚ

As the damping ratio needs to be obtained by experiment and has a little influence on the 
movement under the forced vibration, it is feasible to take the constants ߙ and ߚ far less than 1, 
thus, the authors let ߙ = ߚ = 0.01 [11]. 

3.2. Transverse stiffness of a MCCS 

Then the stiffness of a MCCS should be determined. It is known that during the working 
process of DELVS, the oscillated screen structure makes a synchronous dynamic deformation of 
a MCCS along the transverse and longitudinal direction. Such deformations are both quantifiable 
on the condition that the transverse stiffness and longitudinal stiffness are available. As the MCCS 
compression deformation is within 3-7 mm, namely, far less than free length of MCCS and in its 
linearly-deformed range, the transverse stiffness and longitudinal stiffness are supposed to be a 
certain constant value [3, 5, 8, 9]. Since the dynamic equation governing DELVS system in Fig. 2 
has been illustrated in section 2 and the longitudinal stiffness of a MCCS is well-determined and 
easily obtained, the key to conducting a numerical simulation of DELVS is to calculate the 
transverse stiffness ݇௫ . Up to now, there is no uniform method for calculating the transverse 
stiffness of a MCCS. In this paper, several methods will be compared in the following section. 

3.2.1. Direct methods 

The direct method of determining ݇௫ of a MCCS is calculating the stiffness value directly by 
its physical parameters. Here we will introduce the unit-force method and the energy method. 

(1) Unit-force method. According to the unit-force method introduced by JENG in [13], the 
following formula is invoked: 

݇௫௜௨௡௜ = ௜ଷܦ௜ସ8݊௜݀ܧ ൤1 + 43 ቀܪ௜ܦ௜ቁଶ (2 + ൨(ߥ , (݅ = 1, 2), (9)

where ܧ  and ߥ  are the longitudinal elastic modulus and Poisson ratio of spring material, 
respectively. ܦ௜ is the mean coil diameter of outer spring or inner spring. Similarly, ݀௜ is the wire 
diameter of spring. ݊௜ is the number of active coil of spring. ܪ௜ is the height of spring with the 
DELVS in a stationary state. Note that the subscript “݅” denotes the position of spring and “݅ = 1” 
represents the outer spring while “݅ = 2” represents the inner spring. 

As each group of compression damping spring system of DELVS contains three outer and 
inner MCCSes in a parallel manner, the transverse stiffness of each group of compression damping 
spring system under the unit-force method is ݇௫௨௡௜ = (݇௫ଵ௨௡௜ + ݇௫ଶ௨௡௜) × 6. Here the superscript “uni” 
means “Unit-force method”. 

(2) Energy method. Also, by the energy method introduced by JENG in [13], the transverse 
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stiffness is expressed as: ݇௫௜௘௡௘ = ௜2ܦ௜ܫܧ ൤ߨℎ௜ଶ݊௜ଷ(2 + 3(ߥ − ℎ௜ଶ݊௜ߨ8ߥ + ௜ଶ4ܦ ݊௜ߨ൨,    (݅ = 1, 2),  (10)

where ܫ௜ =  ௜ସ/64 is the section moment of inertia of spring wire, ℎ௜ is the single circle pitch݀ߨ
height of spring. Similarly, the transverse stiffness of each group of compression damping spring 
system by the energy method is supposed to be ݇௫௘௡௘ = (݇௫ଵ௘௡௘ + ݇௫ଶ௘௡௘) × 6. Here the superscript 
“ene” means “Energy method”. 

3.2.2. Indirect methods 

As we know, the longitudinal stiffness of a MCCS can be exactly calculated. Therefore, some 
methods have been developed to obtain the transverse stiffness through the longitudinal one, such 
as the empirical method as well as the newly-developed elastic compression bar model method 
(ECBM). 

(1) Empirical method. Maybe the empirical method is the most common-used formula for 
calculating the longitudinal stiffness of a MCCS when designing a vibrating screening. One can 
find in [6, 12] that the transverse stiffness is regarded as one third of the longitudinal stiffness, i.e.: 

݇௫௜௘௠௣ = ݇௬௜௘௠௣3 , (11)

where ݇௬௜௘௠௣ is longitudinal stiffness of a MCCS and can be formulated as [14]: 

݇௬௜௘௠௣ = ௜ଷܦ௜ସ8݊௜݀ܩ , (݅ = 1, 2), (12)

where ܩ is the transversal elastic modulus of the spring. Similarly, the transverse stiffness of each 
group of compression damping spring system by the empirical method is  ݇௫௘௠௣ = (݇௫ଵ௘௠௣ + ݇௫ଶ௘௠௣) × 6. Here the superscript “emp” means “Empirical method”. 

(2) Elastic compressed bar model method (ECBM). From above we can conclude that the two 
direct methods are more complex than the empirical method. However, the empirical method was 
obtained by practical experience and a lack of accurate derivation or sufficient explanation. Here, 
we will present a simple method.  

yF
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Fig. 4. Sketch of the longitudinal deformation: a) and the transverse deformation, b) considered in ECBM 
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As Yang introduced in [15], a MCCS can be modeled as a compressed straight bar with 
constant cross-section, whose longitudinal and transverse elastic modulus are the same as those of 
the MCCS, respectively. The longitudinal deformation of MCCS is equivalent to the compression 
deformation of modeled bar while the transverse deformation of MCCS is equivalent to the shear 
deformation of the bar, as depicted in Fig. 4. The static compressed position is where the MCCS 
remains with the DELVS in a stationary state. The transverse stiffness formula by ECBM will be 
derived as follows. Note that the derivation is considered in the liner deformation range, which 
agrees well with the property of practical MCCS of the DELVS. 

For a compressed straight bar with constant cross-section, the following relation holds [16]: 

ߝ = (13) ,ܣܧ௬ܨ

where ߝ  is the longitudinal strain induced by the imposed compress force ܨ௬ , and ܣ  is the 
cross-section. According to mechanics of materials, if a bar with an initial deformed length 
(denoted by ݕ଴) experiences an additional compression deformation (denoted by ∆ݕ) in Fig. 4(a), 
then we may have: ߝ = ଴ݕݕ∆ , (14)

and furthermore: ܨ௬ = ݇௬ ⋅ (15) ,ݕ∆

where ݇௬ is the longitudinal stiffness. 
Also, when a transverse force ܨ௫ is applied on the compressed bar, an offset (denoted by ∆ݔ) 

of the top section occurs, as shown in Fig. 5(b). Assuming that the angle between the initial 
position and the rotated position of the center line of the compressed bar is ߦ in radian, then the 
shear strain is expressed as ߛ = tanߦ. As the shear deformation is so tiny that the angle ߦ might 
represent tan ߦ. Thus, we have ߛ =  For the compressed bar, the shear strain can be expressed .ߦ
as [17]: ߛ = (16) ,ܣܩ௫ܨ

and according to the geometrical relationship in Fig. 5(b) and adopt the ߛ =  :we hence obtain ,ߦ

ߛ = ଴ݕݔ∆ , (17)

as well as: ܨ௫ = ݇௫ ⋅ (18) ,ݔ∆

where ݇௫ is the transverse stiffness. 
From Eqs. (13) to (18) the transverse stiffness formula by ECBM can be derived to be: ݇௫௜ா஼஻ெ = ܧܩ ݇௬௜ா஼஻ெ, (19)

where ݇௬௜ா஼஻ெ is longitudinal stiffness, as Eq. (12) demonstrates. Here the superscript “ECBM” 
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means “Elastic compressed bar model method”. Similarly, the transverse stiffness of the damping 
spring system by ECBM is ݇௫ா஼஻ெ = (݇௫ଵா஼஻ெ + ݇௫ଶா஼஻ெ) × 6.  

Table 2. Physical parameters of MCCS of DELVS 
Symbols (Unit) ܩ (GPa) ܧ (GPa) ݀ (m) ܰ ܦ (m) ܪ (m) ߭ ℎ (m) 

Outer spring 79 206 0.03 6 0.193 0.2909 0.3 0.05 
Inner spring 79 206 0.02 7 0.115 0.2009 0.3 0.03 

Based on the basic parameters of the experimental MCCS in Table 2, the transverse stiffness 
and longitudinal stiffness of the inner and outer MCCS are calculated according to the four 
stiffness calculation methods, as shown and compared in Table 3. The transverse stiffness values 
obtained by the four methods are entirely different. Among them, the value by the proposed 
ECBM method is the largest for both the inner spring and outer spring. Currently, we are hard to 
distinguish which method matches better well with the actual situation and which method is more 
fit for DELVS. 

Table 3. Transverse and longitudinal stiffness value of the MCCS in the experimental apparatus 
Symbols (Unit) Method Outer spring (݅ = 1) Inner spring (݅ = 2) ݇௬௜ (N/m) NONE 1.8544×105 1.4841×105 

݇௫௜ (N/m) 

Unit force method 6.0701×104 3.7364×104 
Energy method 5.7506×104 3.4476×104 

Empirical method 6.1813×104 4.9470×104 
ECBM method 7.1115×104 5.6915×104 

4. Model validation 

Next, dynamic model of DELVS together with the proposed ECBM will be validated through 
numerical simulation and the experimental test. And then a relatively feasible transverse stiffness 
determination method for DELVS will be determined.  

4.1. Numerical solution 

The complete numerical simulation procedure is illustrated in the flowchart in Fig. 5. For a 
DELVS, vibration response of the screen structure can be obtained by the numerical solution of 
Eq. (7), which can be solved by a numerical direct time-integration method such as the 
Newmark-ߚ  method [18, 19]. It is widely used in the numerical evaluation of the dynamic 
response of structures. Here Matlab was used to conduct the numerical simulation with the 
Newmark-ߚ method. In the simulation, the zero initial displacement, the zero initial velocity and 
the zero acceleration of DELVS are considered. Each transverse stiffness calculation method for 
a MCCS in section 2.2 will be adopted in order to demonstrate the theoretical vibration response. 
Note that the numerical stability of Newmark- ߚ  scheme can be guaranteed when ߜ ≥ ߢ  ,0.5  = 0.25 [18]. In this paper, we set ߜ = 0.5 and ߢ = 0.25. In addition, as the sampling frequency 
of the experimental test is 10.24 kHz, we make the time interval ∆ݐ = 1/10240 s. Other parameter 
is simulation time ܶ = 60 s. 

Fig. 6 indicates the numerical solution result of the DELVS. The transverse time responses  
 with the Empirical method, the ECBM method, the Unit-force method and the (displacement-ݔ)
Energy method are compared. From the whole time response, it is seen that the transverse motion 
all trend to stability at an amplitude of nearly 1.0 mm. Even in the local magnification curve of 
the response between 38.5 s and 39.0 s, there is no any significant difference. Thus, we can 
conclude that the transverse stiffness is not easy to affect the transverse time response.  

Fig. 7 shows and compares the Lissajous curves indicating the relationship between the 
numerical transverse displacement and longitudinal displacement. These curves are, in fact, the 
numerical vibration trajectories of the DELVS by various transverse stiffness calculation methods. 
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All the trajectories are adjusted according to the same scale for an intuitional demonstration. With 
the influence of rotation around ݖ-direction in Fig. 2, the trajectories are more like slender ellipses 
than straight lines. Additionally, for the ECBM method, the ellipse has a larger minor axis than 
the others, which implies that a large stiffness may affect the trajectory of the DELVS.  

N
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Fig. 5. Flowchart of the numerical solution for DELVS 

 
Fig. 6. Numerical transverse time response of the DELVS  

by various transverse stiffness calculation methods 

4.2. Experimental test 

The experimental system and equipment are shown in Fig. 8. Two same types of acceleration 
sensors (measurement range is 500 m/s2, resolution ratio is 0.002 m/s2, frequency range is  
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0.5-8 KHz) are magnetically attached on the vibration motor support of DELVS for obtaining the 
transverse and longitudinal vibration signal, respectively. These sensors are connected with a data 
acquisition instrument, and then signals can be collected and handled through a data acquisition 
software. During the experimental test, the vibration signal of each measuring point was acquired 
simultaneously, and only the steady-state signal was used. After obtaining the data, the software 
DASP (China Orient Institute of Noise & Vibration, China) was utilized for data processing. 

 
a) Uni-force method 

 
b) Energy method 

 
c) Empirical method 

 
d) ECBM method 

Fig. 7. Numerical vibration trajectories of DELVS by various transverse stiffness calculation methods 

 
Fig. 8. Experimental apparatus: a) experimental DELVS; b) displacement sensors;  

c) data acquisition instrument; d) data acquisition software 

The measured acceleration signals were digitally filtered with a cutoff of 100 Hz and analyzed 
by numerical integration so that the experimental transverse displacement and longitudinal 
displacement were extracted, as viewed in Fig. 9. Note that the corresponding Lissajous curve was 
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generated by the data acquisition software automatically. The magnitude of longitudinal 
displacement is larger than that of transverse displacement, for the reason that the vertical 
component force is larger than the horizontal component force. Besides, displacements in the two 
directions share the same frequency and phase. Rotation exists in the experimental DELVS as the 
vibration trajectory of DELVS is a slender ellipse, and the experimental ellipse is more like the 
numerical ellipse by ECBM. 

 
a) 

 
b) 

Fig. 9. Experimental transverse displacement: a) longitudinal displacement,  
b) the corresponding Lissajous curve 

4.3. Numerical solution vs. experimental test 

In view of quantification, the kinematic characteristics of DELVS, i.e., the transverse 
amplitude (denoted by ߣ௫), the longitudinal amplitude (denoted by ߣ௬), the compound amplitude 
(denoted by ߣ) and the vibration angle (denoted by ߬) are listed in Table 4, among which according 
to the test methods of vibrating screens, we have ߣ = sqrt(ߣ௫ଶ + ௬ଶߣ ) and ߬ = arctan(ߣ௬/ߣ௫) [20].  

Table 4. Movement characteristics of DELVS 
Parameters 

(Unit) 
Numerical results Experimental  

results Empirical method Unit-force method Energy method ECBM ߣ௬  (mm) 3.126 3.126 3.126 3.126 3.1897 ߣ௫  (mm) 0.9195 0.9134 0.9468 1.026 1.0218 ߣ (mm) 3.2584 3.2567 3.2662 3.2901 3.3494 ߬ (°) 73.6090 73.7119 73.1495 71.8294 72.2375 

Here the values of transverse amplitude and longitudinal amplitude were acquired from time 
history in the stable operation. We can find that although the transverse stiffness values by the 
corresponding calculation method are different, the numerical vibration characteristics are almost 
the same as those of the experiment, which verifies the 3-DOF theoretical model of DELVS and 
confirms the derivation in Section 2. However, it is still hard to distinguish which transverse 
stiffness calculation method is the best in view of transverse stiffness value itself. Fortunately, 
since the errors of the numerical simulation data by ECBM are 0.41 % for ߣ௫, –1.77 % for ߣ, and 
–0.56 % for ߬, respectively, and are more closely related to the experimental data, ECBM is 
verified to improve the accuracy of DELVS dynamic model successfully. It should be noted that 
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as a vibrating screen works in the super-resonant mode, the stiffness of MCCS has little influence 
on the movement characteristics of the screen structure. However, as the two vibration motors 
with eccentric blocks inside are mounted on the left and right lateral plate for a DELVS, 
respectively, the screen structure is easier to experience a lateral oscillation than a traditional 
vibrating screen. In order to further study such lateral oscillation, a more accurate calculation 
method for the transverse and longitudinal stiffness of a MCCS, such as the proposed ECBM 
method, is necessary. 

 
Liping Peng proposed the dynamic model and ECBM method for DELVS. Runxin Fang 

conducted the experimental test. Huihui Feng done the numerical simulation of DELVS. Lei 
Zhang designing the experiment. Wenda Ma analyzed the experimental data. Xiaodi He build the 
three-dimension geometrical for DELVS. 

5. Conclusions 

The proposed 3-DOF dynamic model as well as the theoretical analysis of DELVS is verified 
as the numerical vibration characteristics are almost the same as those of the experiment. From 
the numerical simulation result by Newmark-ߚ method, the transverse stiffness is not easy to 
affect the transverse time response despite the entirely different transverse stiffness values 
obtained by the four methods. However, the numerical simulation data of the proposed ECBM are 
in better agreement with the experimental data, which means that ECBM can improve the accuracy 
of DELVS dynamic model. 
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