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Abstract. The method based on a particle filter for a fatigue crack growth prognosis has proved 
to be a powerful and effective tool for developing prognostics and health management (PHM) 
technology. However, the widely used basic particle filter have the unavoidable particle 
impoverishment problem, which will make particles unable to approximate the true posterior 
probability density function of the system state and lead to a prognosis result with a large error. 
This paper proposes a fatigue crack growth prognosis method based on a deterministic resampling 
particle filter. The active structural health monitoring based on the Lamb wave is used for on-line 
crack length monitoring with piezoelectric transducers. With the on-line crack measurement, the 
crack state and crack growth model parameters are estimated for a fatigue crack growth prognosis. 
In addition, the deterministic resampling procedure is employed to overcome the particle 
impoverishment problem. The result shows the proposed crack growth prognosis method based 
on deterministic resampling particle filter can provide more satisfactory results than the basic 
particle filter. 
Keywords: particle filter, deterministic resampling, fatigue crack growth prognosis, active Lamb 
wave monitoring. 

1. Introduction 

Prognostics and health management (PHM) technology [1, 2], which obtains actual conditions 
via advanced sensors and system remaining the useful life through prognostic methods, is an 
immediate area of research focus for safety-critical engineer systems such as aircrafts, power 
plants and infrastructures. By adopting PHM technology, scheduled maintenance can be replaced 
by condition-based maintenance with safety improvement and cost reduction. 

Fatigue crack is regarded as a primary degradation process affecting the structural integrity. 
The prognosis of fatigue crack growth is a crucial problem for developing the PHM technology. 
Traditional crack growth models are accurate if model parameters have been accurately defined 
[3]. However, fatigue crack growth is a stochastic process affected by numerous uncertainties, 
which arise from sources such as intrinsic material properties, loading, and environmental factors. 
Crack would grow in different ways even in identical components working under the same 
condition. To deal with these uncertainties, studies are carried out to integrate actual crack 
measurements obtained from sensors with crack growth models using the Bayesian theory, which 
come out to be the estimation problem of the crack state and crack growth model parameters using 
a sequence of noise measurements. For the estimation problem of a dynamic system, the Kalman 
filter (KF) offers the optimal solution for linear systems affected by Gaussian noise [4]. However, 
the fatigue crack growth process is nonlinear and affected by non-Gaussian noise. Further, 
modified KFs such as the extended KF and the unscented KF are developed to extend the KF to 
the nonlinear system. But they still need the Gaussian noise assumption, and poor performance 
will be obtained when the system is highly nonlinear [5]. On the other hand, the particle filter (PF) 
is capable of handling nonlinear and/or non-Gaussian systems without restrictive assumptions, 
which core idea is to approximate the posterior probability density function (PDF) of the system 
state by a set of random samples called as particles with associated weights. Recently, the PF is 
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more and more applied for predicting problems [6-9], especially for the fatigue crack growth 
prognosis [10-18]. 

However most studied cases mentioned above adopt the basic PF algorithm also known as the 
sequential importance sampling and resampling (SIR) [19], which has the inherent problem called 
as the particle impoverishment. Due to the multinomial resampling algorithm [20] adopted in the 
SIR algorithm, particles are duplicated and eliminated only depending on the corresponding 
particle weights. Particles that have large weights are statistically selected many times, so that 
most particles will be replications of the same particle after several iterations and are unable to 
approximate the true posterior PDF. This problem leads to a large error in the prognosis of fatigue 
crack growth, especially when a small number of particles is required for on-line application. 
Cadini et al. [11], Zio et al. [12], Neerukatti et al. [13] and Chen et al. [14] developed the fatigue 
crack growth prognosis method based on the basic PF method, but did not discuss the particle 
impoverishment problem. 

Several ways were proposed in the PF theory to deal with the particle impoverishment problem. 
The roughening [4] or the kernel smoothing [21] procedure added a random jitter to each particle 
after resampling to rejuvenate the particle diversity. This kind of ways is simple. For the fatigue 
crack growth prognosis, Orchard et al. [10], Chiachío et al. [17], and Sbarufatti et al. [18] adopted 
the roughening procedure in the basic PF based crack growth prognosis method, an artificial noise 
is added to the particle after resampling to rejuvenate the particle diversity. However, the 
parameters (e.g., the variance of the artificial noise or the kernel bandwidth) are customized to 
specific problems and need to be carefully chosen. In addition, only in specific classes of model, 
it is possible to draw particles directly from the analytical kernel PDF. Besides, the methods such 
as the auxiliary variable method [22], the Markov Chain Monte Carlo method [23] and artificial 
intelligent methods [24] are adopted to move particles to positions with a high likelihood region 
to fight the particle impoverishment problem. Corbetta et al. [15] integrated the Markov chain 
Monte Carlo (MCMC) sampling into the basic crack growth prognosis method based on the PF, 
new particles are sampled by using the MCMC sampling at each iteration, and thus the particle 
diversity is kept. However, the MCMC sampling procedure is computationally expensive. all these 
methods mentioned above are focused on the likelihood weight and ignore the spatial distribution 
of particles. The impoverishment problem will be serious when the sample size is small. Put 
differently, Li et al. [25] developed a novel deterministic resampling procedure to solve the 
particle impoverishment problem, which considers both the weights of particles and their spatial 
distribution. It is proved that the deterministic resampling can be strictly unbiased and maintains 
the original state density distribution. Moreover, it is quite useful when a small number of particles 
are required for the on-line application. 

To improve the accuracy of the PF based on-line fatigue crack growth prognosis, this paper 
applies the deterministic resampling particle filter (DRPF) to the fatigue crack growth prognosis. 
The PF state vector consists of the crack length and the crack growth model parameters. Each time 
a new on-line crack measurement is available, it is input into the DRPF to calculate the particle 
weight. Based on the posterior PDF, the crack growth prognosis procedure is conducted. To 
overcome the particle impoverishment problem, deterministic resampling is performed so that 
new particles are generated from copy particles and support particles according to the weights of 
particles and their spatial distribution. Finally, the proposed method is validated with the fatigue 
test of edge crack specimens. During the fatigue test, the active structural health monitoring  
(SHM) based on the Lamb wave [14] is employed for on-line crack monitoring. The damage index 
extracted from the Lamb wave signals is used as the measurement of the crack length. 

The rest of the paper is organized as follows. In Section 2, the DRPF based fatigue crack 
growth prognosis method is introduced. In Section 3, the fatigue test of edge crack specimens is 
presented, and the proposed method is validated with this fatigue test data. Finally, the conclusion 
is provided in Section 4. 
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2. Fatigue crack growth prognosis based on deterministic resampling particle filter 

2.1. Fatigue crack growth prognosis based on particle filter 

In the PF theory, a state space model, which consists of a state equation and a measurement 
equation, needs to be defined. The state equation describes the state evolution representing a 
hidden Markov process of order one, as shown in Eq. (1). The measurement equation governs the 
relationship between the measurement value and the system state, as shown in Eq. (2): ܠ௞ = ,௞ିଵܠ)݂ ,௞ିଵߠ ߱௞ିଵ), (1)ݕ௞ = ,௞ܠ)݃ (2) ,(ߥ

where ݇ is the discrete time index, ܠ௞ is the system state, ݂(⋅) is a nonlinear model representing 
the state evolution from time ݇ − 1 to time ݇ ௞ିଵߠ ,  is the model parameter vector, ߱௞ିଵ  is a 
random variable representing the state noise; ݕ௞ is the state measurement of the state ܠ௞, ݃(⋅) 
represents the relationship between the measurement ݕ௞ and the state ܠ௞, ߥ is a random variable 
denoting representing the measurement noise.  

For solving fatigue crack growth problem, the state equation can be determined by a  
physic-based crack growth model. The Paris’ law [26] has been widely used, giving the crack 
growth rate as Eq. (3): ݀ܽ݀ܰ = ௠, (3)(ܭ∆)ܥ

where ܽ is the crack length, ܰ is the number of loading cycles, ܥ and ݉ are the material constants, ∆ܭ is the stress intensity factor (SIF) range acting as the crack growth force, which is expressed 
as Eq. (4): ∆ܭ = (4) ,ܽߨ√ߪ∆ܨ

where ∆ߪ is the stress amplitude, ܨ is the geometric coeffecient. 
Eq. (3) can be expressed in a discrete form to represent the crack evolution from time ݇ − 1 

to time ݇ as expressed in Eq. (5): ܽ௞ = ܽ௞ିଵ + exp(߱)(ܭ∆)ܥ௠∆ܰ, (5)

where ∆ܰ is the discrete step of loading cycles, the product (ܭ∆)ܥ௠∆ܰ gives the crack length 
increment for each time step. The random variable ߱  follows the Gaussian distribution  ܰ(−ߪఠଶ/2 ఠଶߪ , ) , and the term exp(߱)  that is nonnegative is incorporated for representing 
uncertainties during the fatigue crack growth [27]. Thus, exp(߱) is lognormally distributed. The 
mean value of ߱ is selected as −ߪఠଶ/2 such that the expectation of exp(߱) is equal to 1 [15]. 

To express the uncertainty between different structures, the parameter ܥ is considered as a 
random variable and the material parameter ݉ is adopted as a constant. Thus, the PF state vector 
is represented as ܠ௞ = [ܽ௞, ௞]. As a result, the state equation is expressed as Eq. (6): ൜ܽ௞ܥ = ܽ௞ିଵ + exp(߱)ܥ௞ିଵ(∆ܭ)௠∆ܰ,ܥ௞ = .௞ିଵܥ  (6)

On the other aspect, the measurement function is defined to express the relationship between 
the measurement and the crack length. By using the SHM technologies, the crack length can be 
monitored on-line. Among SHM methods, the active guided wave based method is one of the most 
appealing and effective methods, which have the advantages including the sensitivity to a small 
damage as well as the ability of region monitoring [28, 29]. The quantity extracted from guided 
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wave signals called as the damage index is usually applied to quantify the crack length. Thus, the 
measurement equation can be denoted as Eq. (7): ݕ௞ = ݃(ܽ௞) +  (7) ,ߥ

where the random variable ߥ follows the Gaussian distribution ܰ(0, ߪ௩ଶ), denoting that the damage 
index is affected by zero mean Gaussian noise, ݃(⋅) is a one-to-one mapping between the crack 
length and the damage index dominated by models such as polynomial or artificial neural network.  

At the current time ݇, the PF objective is to calculate the posterior PDF ݌(ܠ௞|ݕଵ:௞) of the 
system state, conditioned on the measurements ݕଵ:௞  This posterior PDF can be .{௞ݕ ,... ,ଶݕ ,ଵݕ} =
evaluated with the well-known iterative prediction and updating steps according to the  
Chapman-Kolmogorov equation and the Bayes’ rule [30]. However, this iterative procedure does 
not have analytical solutions in most cases. The PF deals with it by using the Monte Carlo method: 
the posterior PDF ݌(ܠ௞|ݕଵ:௞) is approximated by a set of random samples {ܠ௞(௜), ݅ = 1, ..., ௦ܰ} 
called as “particles” with associated weights {ݓ෥௞(௜), ݅ = 1, ..., ௦ܰ}, shown in Eq. (8): 

(ଵ:௞ݕ|௞ܠ)݌ ≈ ෍ ௞ܠ൫ߜ෥௞(௜)ݓ − ௞(௜)൯ேೞ௜ୀଵܠ , (8) 

where ௦ܰ  is the number of particles and ܠ௞(௜) is sampled from a PDF called as the importance 
density. ߜ(⋅) is the Dirac delta function. In the basic PF, the weight ݓ෥௞(௜) is calculated through the 
likelihood value ݌(ݕ௞|ܠ௞(௜)) of each particle, as shown in Eq. (9): ݓ௞(௜) = ௞ିଵ(௜)ݓ  ௞(௜)൯. (9)ܠ௞หݕ൫݌

As the measurement equation defined in Eq. (7), the particle weight updating is performed as 
Eq. (10): 

௞(௜)ݓ = ௞ିଵ(௜)ݓ ௞(௜)൯ܠ௞หݕ൫݌ ∝ ௞ିଵ(௜)ݓ ௞หܽ௞(௜)൯ݕ൫݌ = ௞ିଵ(௜)ݓ 1ඥ2ߪߨ௩ଶ exp ቆ− ௞ݕ] − ݃(ܽ௞)]ଶ2ߪ௩ଶ ቇ . (10) 

After that, the weight normalization as Eq. (11) is performed to ensure the sum of weights 
being equal to 1: 

෥௞(௜)ݓ = ∑௞(௜)ݓ ௞(௜)ேೞ௜ୀଵݓ . (11) 

As a result, the posterior estimation of the system estimate can be evaluated as the weighted 
summation of the particles: 

ො௞ܠ = ෍ ෥௞(௜)ேೞݓ௞(௜)ܠ
௞ୀଵ . (12) 

Based on the posterior PDF of the state ݌(ܠ௞|ݕଵ:௞), a prognosis of the future state evolution is 
performed by projecting the particles in the posterior PDF in time up to the future as follows: ܠ௞ାௗ(௜) = ݂൫ܠ௞ାௗିଵ(௜) , ,௞ߠ ߱௞ାௗିଵ൯, (13) ݌(ܠ௞ାௗ |ݕଵ:௞) ≈ ෍ − ௞ାௗܠ൫ߜ෥௞(௜)ݓ ௞ାௗ(௜)ܠ ൯,ேೞ௜ୀଵ  (14) 
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where ݇ + ݀ is the future time of interest.  

2.2. Deterministic resampling 

In Eq. (11), the variance of particle weights {ݓ෥௞(௜), ݅ = 1, . . . , ௦ܰ}  can only increase overtime 
[30], so that the particle weight will concentrate on a few particles and most particles will have 
negligible weights. The basic particle filter adopts the multinomial resampling algorithm, which 
draws a new particle set from {ܠ௞(௜) , ݅ =  1, ..., ௦ܰ}  with the probability proportional to the 
normalized weight {ݓ෥௞(௜), ݅ = 1, ..., ௦ܰ}. If the weight ݓ෥௞(௜) of the ݅th particle is large, this particle 
is duplicated as several particles, otherwise this particle will not be contained in the new particle 
set. The size of the new particle set keeps being equal to ௦ܰ, and the total particle weight is set to 
1/ ௦ܰ. However, this procedure brings the side effect of sample impoverishment problem that most 
particles are replications of the same particle after several iterations. To overcome the sample 
impoverishment problem, the deterministic resampling particle filter [25] is adopted in this paper, 
where the deterministic resampling procedure is conducted after the weight normalization. 

The deterministic resampling procedure generates particles from two parts: (1) copy particles; 
(2) support particles. 

1) Copy particles: 
For the ݅th particle ܠ௞(௜), it is duplicated for ݊௜ times, where ݊௜ is the integer part of the product ௦ܰ ⋅ ෥௞(௜), as shown in Eq. (15): ݊௜ݓ = උ ௦ܰ ⋅ ෥௞(௜)ඏ, (15)ݓ

where the symbol ۂ⋅ہ  means the integer part. For all ௦ܰ  particles, total ௖ܰ௣ = ∑ ݊௜ேೞ௜ୀଵ  copy 
particles are obtained, what is denoted as {(ܠ௞(௝))௖௣}௝ୀଵே೎೛ . 

After that, the residual weight of each particle is evaluated as Eq. (16): 

ෝ௞(௜)ݓ = ௦ܰ ⋅ ෥௞(௜)ݓ − උ ௦ܰ ⋅ ෥௞(௜)ඏ௦ܰݓ . (16)

2) Support particles: 
Instead of uncensored discarding particles that have small weights, the state space of particles 

is partitioned into variable-size countable units considering the residual weight of the particle and 
their spatial distribution. Assuming the particle set with residue weights {(ܠ௞(௜), ෝ௞(௜))}௜ୀଵேೞݓ  is 
divided into ௚ܰ spatial grids. The ݌th grid is denoted as Eq. (17): ݃௣ ≜ ቄ൫ݔ௞,௣(௧) , ݐ    ,ෝ௞,௣(௧)൯ݓ = 1,2, . . . , ݀௣ቅ, (17)

where the subscript ݌ denotes the index of partition grid ݌ = 1, 2,…, ௚ܰ, ݀௣ is the number of 
particles contained in the ݌th grid and is defined as the particle density. If a grid is without any 
particles, it is called an empty grid. 

The partition of the spatial distribution is initialized with a starting grid size ۺ௦௧௔௥௧, which does 
not have more dimensions than the state space. All particles are first partitioned into grids of size ۺ௦௧௔௥௧. Then the particle density of each nonempty grid is detected: if it is more than a predefined 
threshold ߙ, the grid is subdivided into half size in all dimensions; otherwise, the grid is considered 
as an independent one. This detection and partition procedure is repeated until the particle density 
of all grids is below ߙ or the grid size is lower than the threshold bound ܮ୫୧୬. Here, ܮ୫୧୬ is a  
pre-set threshold, which prevents grids from being divided into portions of too small size [25]. 
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Fig. 1 shows a partition when the state ܠ has two dimensions. Particles are located in several grids 
according to their state values and residue weights.  

 
Fig. 1. Illustration of spatial grids of deterministic resampling 

After the spatial partition is completed, particles are sampled from these grids, called as 
support particles. Assuming the total ௢ܰ  non-empty grids are obtained, a support particle is 
obtained for the ݌th nonempty grid, ݌ = 1, 2, 3, ...,  ௢ܰ, as shown in Eq. (18): 

݃௣ ⇒ ,௦௣(௞௣ܠ)) :(௦௣(௞௣ݓ) ۔ۖەۖ
௦௣(௞௣ܠ)ۓ = ෍ ௞,௣௧ܠ ௦௣(௞௣ݓ)௞,௣௧ݓ ,ௗ೛௧ୀଵ(ݓ௞௣)௦௣ = ෍ ෝ௞,௣௧ௗ೛௧ୀଵݓ ,  (18) 

where symbol ⇒  denotes the summing up. The weighted summation of the particles in the 
partition grid is deemed as the newly resampled particle (ܠ௞௣)௦௣. The summation of the particle 
weights (ݓ௞௣)௦௣ in this partition grid is adopted as a new weight of the resampled particle. Through 
this procedure, the deterministic resampling preserves low-weight particles during resampling for 
possible usages in the future [25]. 

The weight of the copy particle (ܠ௞(௝))௖௣, ݆ = 1, 2, 3, ..., ௖ܰ௣, is specified as the equal division 
of the complement of the support particle weights, as expressed in Eq. (19): 

௖௣(௞(௜)ݓ) = 1 − ∑ ௦௣ே೚௣ୀଵ௖ܰ௣(௞௣ݓ) . (19) 

The resampled particle set consists of the copy particles {(ܠ௞(௝))௖௣}௝ୀଵே೎೛  and support particles {(ܠ௞௣)௦௣}௣ୀଵே೚ . It should be noted that the particle number ௦ܰ = ௖ܰ௣ + ௢ܰ changes along with the 
iteration, which is no longer a fixed number.  

2.3. Implementation of proposed fatigue crack growth prognosis method 

Fig. 2 shows the framework of the proposed fatigue crack growth method. While the structure 
is under service and monitored with the active Lamb wave based SHM, the measurement of the 
crack length is sequentially obtained and inputted into the DRPF. Once a new measurement is 
available, it is used to update particle weights. Thus, the posterior PDF is calculated and is the 
basis of the crack growth prognosis. After that, deterministic resampling is conducted to resample 
particles from the spatial distribution of particles, and the newly obtained particles are transferred 
to the next time step. 
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Fig. 2. Framework of fatigue crack growth prognosis based on DRPF 

3. Experimental evaluation on edge crack specimens 

3.1. Experimental setup 

Five edge-crack specimens are manufactured using a LY12 aluminum plate of 2 mm thickness, 
as illustrated in Fig. 3, which geometry and sensor layout are shown in Fig. 4. These specimens 
are labeled as T1, T2, T3, T4 and T5. A notch of length is machined at the specimen edge to 
initiate the crack and control the direction of crack growth. The notch length is selected as 50 mm 
to accelerate the fatigue tests. Two columns of holes at each end of the specimen are used to 
assemble the fixture with bolts.  

 
Fig. 3. Edge crack specimen 

 
Fig. 4. Geometry and PZT layout 

During the fatigue test, the active Lamb wave based SHM is employed to monitor the crack 
growth in real time. Encapsulated piezoelectric transducers called as peizoelectric transducer  
(PZT) layers [31] are adhered to the surface of specimen for exciting and acquiring guided wave 
signals. Totally six PZTs are attached on the surface of each specimen. These PZTs are numbered 
as PZT1, PZT2, PZT3, PZT4, PZT5, PZT6 respectively, where PZT1, PZT2, PZT3 are used as 
the actuators, and the others are employed as the sensors. The signal transmitting path, where the 
signal is excited with PZT1 and sensed with PZT4, is denoted as Channel 1-4. Totally three 
Channels are employed: Channel 1-4, Channel 2-5, and Channel 3-6, which have different 
distances from the crack tip.  

Fig. 5 illustrates the experimental setup of the fatigue test. The MTS electro-hydraulic servo 
material test system is used for applying the fatigue load. The specimen is clamped with the fixture 
at the both ends. The multi-channel PZT array scanning system developed by the authors’ group 
[32] is adopted for signal actuating and acquiring. Before fatigue tests, a tensile test is performed 
with T1 specimen to determine the fracture load of the cracked specimen. As a result, the fracture 
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load of this specimen is 56 kN. Thus, the fatigue load of T2-T5 specimens is chosen as the sinusoid 
load of the peak value ୫ܲୟ୶ = 17 kN, stress ratio ܴ = ୫ܲ୧୬/ ୫ܲୟ୶ = 0.1 and 10 Hz load frequency. 
The experimental crack length is observed at 5mm interval, while the Lamb wave based crack 
monitoring is performed. The 5-cycle Hanning-windowed sine burst signal with the center 
frequency of 250 kHz and ±70 V amplitude is used as the excitation signal, and the response Lamb 
wave signals are acquired from three channels with the 10 MHz sample rate.  

 
Fig. 5. Experimental setup 

3.2. Experimental results 

Fig. 6 shows the fatigue crack growth trajectories of T2-T5 specimens observed at 5 mm 
interval. It can be found, although the specimen and fatigue loads are identical, these fatigue crack 
growth trajectories are diverse. This is because the fatigue crack growth process is a stochastic 
process, which is affected by numerous uncertainties derived from sources such as the intrinsic 
material property, specimen machining and assembling error [27]. Thus, crack growth prognosis 
made by a deterministic physical model may cause a large error.  

 
Fig. 6. Experimental crack lengths versus loading cycles of T2-T5 specimens 

Fig. 7 illustrates a typical Lamb wave signal acquired from the Channel 2-5 with PZTs. The 
crosstalk is caused by the excitation signal which is a 5-cycle Hanning-windowed sine burst. The 
direct wave packet is the first wave packet transmitted from the actuator to the sensor, thus it 
carries the most important information of the crack growth process. The amplitude and phase of 
the direct wave packet changes with the increase of the crack length. These changes can be used 
to represent the crack growth. A quantity called as the damage index is usually employed to 
quantify the changes between changed signals and the signal collected at the pristine state called 
as the baseline signal. The normalization correlation moment (NCM) damage index [33] is 
adopted in this paper, which is expressed as Eq. (20): 
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ݕ = ቚ׬ ߬௘หݎ௣௣(߬)ห݀߬଴் − ׬ ߬௘หݎ௣௤(߬)ห݀߬଴் ቚ׬ ߬௘หݎ௣௣(߬)ห்݀߬ିଵ଴ . (20)

where ݕ is the damage index, ݎ௣௤(߬) is the cross-correlation function of the baseline signal (ݐ)݌ 
that is collected at the pristine state and the signal (ݐ)ݍ collected during the crack growth, ݎ௣௣(߬) 
is the autocorrelation function of the signal (ݐ)݌, ܶ is the signal length, ݁ is the order of the 
statistical moment that is arbitrary and not limited to integers. 

 
Fig. 7. Typical lamb wave signal acquired from channel 2-5 

To calculate the NCM damage index, the direct wave packet is used instead of the whole signal. 
The baseline signal is collected when each specimen is clamped, and the crack does not start to 
grow. As shown in Fig. 4, there are three channels, the damage index calculated is different from 
other channels because the positions of these channels are different from each other. After 
comparison, damage indices extracted from Channel 2-5 represent good correlation with crack 
lengths of T2-T5 specimens, as shown in Fig. 8, which are calculated with the statistical moment ݁ = 1.  

 
Fig. 8. Experimental crack length versus NCM damage index 

3.3. Validation of the proposed DRPF based on-line fatigue crack growth prognosis 

To validate the method, the last T5 specimen is used as the target structure to validate the 
proposed method. Thus, the fatigue test data of T2-T4 specimens are employed as the database to 
establish the state space model of edge-crack specimen. 

3.3.1. State space model of edge-crack specimen 

In the state equation defined for fatigue crack growth, as shown in Eq. (5), the SIF range ∆ܭ 
of the edge-crack plate can be calculated through Eq. (21) referring to the SIF handbook [34]: 
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ܭ∆ = ܨܽߨ√ߪ∆ ቀܾܽቁ, (21) 

where ∆ߪ is the nominal stress amplitude, ܽ is the length of the edge crack, 2ܾ is the width of the 
edge-crack plate, ܨ is the geometric correction factor which is the function of the ratio ܽ/ܾ. This 
correction factor is expressed as follows: 

ܨ ቀܾܽቁ = ඨ2ܾܽߨ tan 2ܾܽߨ ⋅ 0.752 + 2.02 ܾܽ + 0.37 ቀ1 − sin 2ܾቁଷܽߨ
cos 2ܾܽߨ . (22) 

Usually, the parameters ܥ and ݉ in the Paris’ law is obtained with fatigue test data of the same 
specimens. In this paper, the crack growth data of T2-T4 specimens is used to fit these parameters 
to describe the prior knowledge of fatigue crack growth of edge crack specimen. The logarithm 
transformation of the Paris’ law gives Eq. (23): 

lg ൬݀ܽ݀ܰ൰ = lg(ܥ) + ݉lg(∆ܭ), (23) 

where lg(ܥ) and ݉ are the intercept and slope of the linear relationship between lg(∆ܭ) and the 
crack growth rate lg(݀ܽ/݀ܰ). The data points of the crack growth rate can be approximated by 
applying the commonly used secant method [35]. Fig. 9 illustrates the data points of T2-T4 
specimens. Through linear regression, the fitted parameters are obtained as ݉ =  3.819 and lg(ܥ) = –13.624. 

To express the uncertainty between different structures, the parameter ܥ is considered as a 
random variable, and the material parameter ݉ in Eq. (6) is adopted as a constant. The uncertainty 
of the material parameter ܥ is considered in the crack growth model. The prior distribution of the 
parameter ܥ is adopted as lg(ܥ)~ܰ(–ߪ ,13.624஼ଶ = 0.32), in which ߪ஼ଶ = 0.32 is adopted so that it 
is efficient to represent the dispersion of the crack growth regulated by the Paris’ law. 

 
Fig. 9. Linear regression for Paris model parameters 

In the measurement equation, shown in Eq. (17), the measurement mapping ݃(⋅) represents 
the relationship between the crack length and the measured crack length. With the experimental 
results of T2-T4 specimens shown in Fig. 8, this mapping can be obtained by polynomial fitting 
as Eq. (24): ݕ = −7.897 × 10ି଺(ܽ − ܽ଴)ଷ + 6.663 × 10ିସ(ܽ − ܽ଴)ଶ + 3.343 × 10ିଷ(ܽ − ܽ଴) , (24) 

where ܽ is the crack length, ܽ଴ = 50 mm is the initial crack length (notch length).  
Thus, the measurement equation is expressed as follows: 
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௞ݕ = −7.897 × 10ି଺(ܽ௞ − ܽ଴)ଷ + 6.663 × 10ିସ(ܽ௞ − ܽ଴)ଶ      +3.343 × 10ିଷ(ܽ௞ − ܽ଴) + (25) ,ݒ

where 0)ܰ~ݒ, (௩ଶߪ  denotes the measurement uncertainty. The variance ߪఔ =  0.064 is also 
calculated with the experimental results of T2-T4 specimens by using the maximum likelihood 
estimation. 

3.3.2. Fatigue crack growth prognosis of T5 specimen 

T5 specimen is used as the target structure to validate the proposed DRPF based crack growth 
prognosis method. For the on-line crack growth prognosis of T5 specimen, the DRPF parameter 
is set as ௦ܰ = 50, ∆ܰ = 50, and ߪఠଶ = 0.01. The starting grid size ۺ௦௧௔௥௧  [௦௧௔௥௧ܥ ,௦௧௔௥௧, ܽ௦௧௔௥௧ݓ] =
of the state space partition in deterministic resampling is adopted as: 

௦௧௔௥௧ݓ = max൫ݓෝ௞ାଵ௜ ൯ − min൫ݓෝ௞ାଵ௜ ൯5 ,   ܽ௦௧௔௥௧ = max൫ܽ௞ାଵ௜ ൯ − min൫ܽ௞ାଵ௜ ൯5 ௦௧௔௥௧ܥ , = max൫ܥ௞ାଵ௜ ൯ − min൫ܥ௞ାଵ௜ ൯5 ߙ   , = 3. 
At the initial time ݇ =  0, ௦ܰ  random samples {ܥ଴௜}௜ୀଵேೞ  are drawn from the distribution lg(ܥ)~ܰ (–13.624, 0.32) and assigned to each particle and the particle set is initialized as  {൫ܽ଴(௜) = ܽ଴, ݅ ,଴(௜)൯ܥ =  1,..., ௦ܰ} . Meanwhile, the weight of each particle is initialized as  {ݓ଴(௜) = 1/ ௦ܰ, ݅ = 1,..., ௦ܰ}. 
During the fatigue test of T5 specimen, guided wave signals are excited and acquired 

sequentially. The damage index is extracted from these signals as the measurement of the actual 
crack length, which is employed to calculate the particle weight. Thus, the posterior PDF of the 
crack length and parameter ܥ  is obtained as the approximation with the help of the particles {(ܽ௞(௜), ݅ ,(௞(௜)ܥ = 1, ..., ௦ܰ} and associated weights ݓ௞(௜). Based on the posterior PDF, crack growth 
prognosis is performed. And then the deterministic resampling is conducted according to the 
spatial distribution of the particles. As mentioned above, the particles are initialized with {ܥ଴௜}௜ୀଵேೞ . 
After each resampling procedure, values in {ܥ଴௜}௜ୀଵேೞ  are duplicated and eliminated for each particle. 
Thus, the particle diversity can be represented by counting the unique ܥ  values of particles.  
Fig. 10 illustrates the varying number of different particles after resampling processes when new 
measurements are available. It can be found that the particle impoverishment problem of the basic 
PF is serious only after several resampling procedures. By contrast, the DRPF maintains a 
diversity particle set. 

 
Fig. 10. Varying number of unique ܥ values after 

resampling processes 

 
Fig. 11. Posterior estimate of the crack length 

considering all the crack measurements 

0 1 2 3 4 5 6 7 8
Resampling times

0

10

20

30

40

50

60

DRPF
Basic PF

0 0.5 1 1.5 2 2.5
N (cycles) 104

50

60

70

80

90 Proposed method
Basic PF
Experimental value
Paris model



2721. APPLICATION OF DETERMINISTIC RESAMPLING PARTICLE FILTER TO FATIGUE PROGNOSIS.  
WEIBO YANG, SHENFANG YUAN, JIAN CHEN 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. DEC 2017, VOL. 19, ISSUE 8. ISSN 1392-8716 5989 

During on-line prognosis, the posterior PDF of the crack length and parameter ܥ is used as the 
initial conditions for prognostic routines. Fig. 11 illustrates the prognosis results given by the basic 
PF and DRPF. In this figure, the crack growth trajectory of the Paris model represents the result 
by using the Paris’ law with the fitted parameter lg(ܥ) = –13.624, ݉ = 3.819, and ܽ଴ = 50, ∆ܰ = 50, which results in the biggest error. The prognosis result of the basic PF slightly improved 
by considering the actual crack measurement, however there is still a large error because of particle 
impoverishment. On the other hand, the DRPF gives quite a good result. The root means square 
error (RMSE) of the basic PF and DRPF is 1.5 mm and 10.5 mm respectively, showing the 
effectiveness of the proposed method. 

4. Conclusions 

To improve the prognosis accuracy, the deterministic resampling particle filter is applied to 
the fatigue crack growth prognosis. In the DRPF based method, the crack length and the parameter 
in the crack growth model are estimated simultaneously. The deterministic resampling procedure 
draws particles from two sources: copy particles and the support particles, which maintain the 
particle diversity and overcome the particle impoverishment problem. A fatigue test of edge-crack 
specimens is conducted to validate the proposed DPRF based fatigue crack growth method, during 
which the active structural health monitoring based on the Lamb wave is performed to offer the 
on-line crack measurement. The validated result shows better performance of the proposed method 
than the basic PF. Although the effectiveness of the proposed method has been proved, further 
detail research still needs to be performed on more realistic and complex structures.  
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