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Abstract. The article presents equivalent mathematical models of a boring bar designed for deep 
boring, in a distributed and a discrete idealizations. A mathematical model describing coupled 
torsional and lateral vibrations of a boring bar is constructed in the form of a set of differential 
equations with lagging of the cutting process dynamics. A methodology for studying stability in 
small of the deep boring process using a characteristic quasi-polynomial is presented. The 
numerical-analytical results of the studies made it possible to discern stability regions in the 
parameter space of the model and to obtain relations for maximal cutting depth as a function of 
geometrical and technological parameters (stiffness, cutting velocity, feeding etc.) of the boring 
bar considered. It is noted that the obtained numerical-analytical results are in good agreement 
with experimental data. 
Keywords: deep boring, mathematical model, stability, D-decomposition, boring bar, quasi-
polynomial. 

1. Introduction 

It is known [1] that console boring bars, being highly effective in boring deep orifices at 
specialized and general-purpose machines, possess low stiffness, reducing their vibration stability. 
As a result, a considerable number of works (see [1-16] and the related references) are dedicated 
to the numerical-analytical and experimental study of vibrations of console boring bars. This fact, 
undoubtedly, predetermined further priority of the issue of vibrostability in investigating the 
dynamics of machines. One of the labor-consuming operations in part cutting is boring deep 
orifices (orifices with the ratio of 𝑙/𝑑 > 5, where 𝑙 is orifice length and 𝑑 is its diameter). Due to 
insufficient stiffness of boring tools, the nonlinear relation between cutting force and cutting 
thickness and width, a phase characteristic of the cutting force, decrease of the cutting force with 
increasing cutting velocity and alteration of the front and rear angles of the tool in the presence of 
vibration, deep boring at specialized lathes at the most productive cutting regimes does not provide 
required quality parameters, leads to vibrations (torsional, lateral and longitudinal oscillations) 
and to decreasing the productivity of the machine, to premature wear of the tools or even to the 
damage of its cutting elements. This puts forward the issue of decreasing the vibration level 
accompanying deep boring, that is, determining technological parameters (feeding and cutting 
velocity, cutting depth and others) corresponding to the damping process of self-exciting torsional, 
lateral and longitudinal vibrations of the boring bar.  

Works on deep drilling and boring are currently widely used in machine-tool industry and 
mechanical engineering [1-7], aircraft industry [8], in deep oil-well drilling etc. [8-17]. They 
review the main ways of deep boring, systematize the results of the studies and, based on it, present 
methodologies for designing highly productive tools and technologies. 

Publications [1-7] mainly deal with experimental studies, in which particular factors causing 
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self-excitation of vibrations in the metal cutting process were found out and investigated, and the 
results of experimental studies were given. In [1], the main ways of deep drilling and rough and 
finish boring are considered, and designs of highly-productive tools used in deep boring are 
described. The fundamentals of designing technological processes and tools providing high 
productivity and machining precision are presented. Vibration types and their causes are  
described, as well as the effect of the cutting process parameters and of the tools on vibration 
intensity, and the ways of reducing vibration intensity. Works [3-5] treat the issues of deep boring, 
depending on geometrical parameters, technological requirements it must comply with, and types 
of tools used to this end. It is shown that using a classification of applicability of tools will make 
it possible to reduce costs of production preparation and to increase labor productivity. In [7], the 
main issues of the dynamics of metal-cutting machinery are considered: equivalent and elastic 
systems, working processes, stability of dynamic systems, stationary and transient processes, 
forced vibrations in metal cutting. 

Work [8] analyzes the causes of the development of self-excited oscillations in the process of 
deep boring when machining parts of aircraft engines, based on a 2D mathematical model and 
experimental data. Using numerical computations, it is found that changes in the cutting thickness 
resulting from the regenerative effect of “trail” machining produce the strongest effect on vibration 
intensity. Computational and experimental relations between vibration amplitude and cutting 
depth and feeding value are given. Work [9] presents experimental results on bending vibrations 
of a boring bar in idle running and cutting, which made it possible to establish relations between 
the vibration amplitude and damping value, stiffness, mass, cutting velocity and eigen-frequency 
of the boring bar. In [10-11], the results of choosing the cutting tool geometry and the cutting 
process for effective deep boring are presented. Works [12-13] analyze the cutting process on the 
macro and microscale levels in the process of deep-well boring. The experimental boring 
procedure is developed to study the effect of cutting and feeding velocity on the cutting process 
(as exemplified by machining the 18MND5 steel). Here, it is also found that cutting velocity 
affects vibrostability less than feeding velocity. In [14-16], the possibility of suppressing 
self-exciting vibrations in the drilling process, using parametric excitation and a specialized tool, 
is discussed. A two-mass system is considered, of which the main mass is excited by a self-exciting 
force (cutting force). The second mass, acting as a dynamic absorber, is attached to the main mass 
and, by varying the stiffness between the main mass and the absorber mass, represents parametric 
excitation. The experiments show that that vibration can be substantially suppressed with the 
parametric excitation effect. However, the interconnection and the effect of torsional, lateral and 
longitudinal vibrations on vibrostability in deep boring still remain insufficiently studied. To this 
end, the work presents equivalent mechanical models of a boring bar in a distributed and a discrete 
idealizations; a mathematical model is constructed in the discrete idealization, which describes the 
interrelation of torsional and lateral vibrations of the boring bar, representing a set of differential 
equations with lagging, describing the cutting process dynamics. 

The results of the studies made it possible to discern regions of stability in the parameter space 
of the model and to obtain relations between maximal cutting depth and the lag value, geometrical 
and technological parameters (damping and stiffness coefficients, cutting and feeding velocity etc.) 
of the analyzed boring bar model. The results are shown to be in good agreement with the 
experimental data. 

2. Description of the physical model 

An equivalent mechanical model of a lathe designed for deep boring is exemplified in Fig. 1, 
where: (1) is shank of the boring bar with boring head (2), (3) is machined part, (4) is support, 
(5) is spindle head, (6) are slideways and (7) is bed frame. 

Boring head (2) consists of a steel body housing cutters and feather keys, which enter the 
orifice being bored preloaded. Drilling and boring is done using single and multi-blade tools. The 
part is secured in the chuck, which rotates together with the spindle at n rpm, while the boring bar 
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is secured to the support, which provides feeding at S mm/rev. An internal channel in the system 
is designed for supplying cutting fluid or for the exit of cutting chip, depending on the machining 
scheme. It is known [1] that the dominating vibrational element in the dynamic system is the 
boring bar shank. Besides, the body of the boring head experiences and translates onto the boring 
bar rather high loads resulting from cutting and friction along the slideways. 

 
Fig. 1. Equivalent mechanical model of a lathe 

In deep boring, complex dynamic phenomena arise, which are connected with the metal cutting 
process and friction of the guiding elements against the surface of the machined part. The 
accompanying forces and moments depend on the angular rotation velocity of the part, 
technological parameters of cutting, tool geometry, cutting fluid, etc. Studying the dynamic of the 
boring bar, accounting for the interrelation of vibrations, poses certain difficulties, thus, the main 
currently available results on the study of vibration are presented separately for each of the three 
types of vibration (torsional, lateral and longitudinal). 

There are a number of factors causing lateral self-vibrations: firstly, cutting velocity is 
normally in the range corresponding to the falling part of the cutting force/cutting velocity curve; 
secondly, variation of the cutting thickness, leading to variation of cutting force, which vary with 
a time lag relative to the variation of cutting thickness, thus exciting and enhancing 
self-oscillations. Torsional self-oscillations can be caused by the same factors as lateral ones.  

To study the interrelated torsional and lateral vibrations, let us choose from the equivalent 
mechanical model of a lathe (Fig. 1) the most vibrational element the boring bar, with its 
equivalent mechanical model presented in Fig. 2. 

 
Fig. 2. Equivalent mechanical model of a boring bar in a distributed idealization 

The boring bar in Fig. 2 is represented as an elastic rod with continuous mass distribution, 
accounting for its being rigidly secured in the support on one end and the specificity of the metal 
machining process on the other. It is assumed that the boring bar material is homogeneous and 
isotropic, and that the plane cross-section hypothesis holds. According to the designations used in 
Fig. 2, 𝜑(𝑥, 𝑡), 𝑦(𝑥, 𝑡) and 𝑧(𝑥, 𝑡) describe torsional and lateral vibrations of the boring bar 
relative axes 𝑥, 𝑦 and 𝑧, respectively. In the process of deep boring, vibrations of the boring bar 
induce dynamic cutting forces 𝐹 , cutting moments 𝑀  and friction moments 𝑀 .  
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3. Mathematical model 

In constructing a mathematical model, it is assumed that a deep orifice is bored with a long 
hollow boring bar with a single-blade tool. As the boring bar is represented by an elastic rod 
(Fig. 2), one end of which is rigidly secured in the support and the other end is equipped with a 
cutting blade, which, in the process of machining with accompanying vibrations, experiences 
dynamic forces and a cutting moment, then, to simplify further investigations, the boring bar is 
substituted for by a material point with coordinate 𝑥 = 𝑙 with reduced mass and moment of inertia 
(datum point 𝑥 = 𝑙). The lateral and torsional stiffnesses of the boring bar are accounted for by 
introducing springs with the corresponding stiffness coefficients 𝑐 , 𝑐  and 𝑐 , respectively 
(Fig. 3).  

 
Fig. 3. Equivalent mechanical model of a boring bar in a discrete idealization. 𝑞 (𝑡), 𝑞 (𝑡) are 

displacements of the reduced mass relative coordinate axes 𝑦 and 𝑧,  
and 𝑞 (𝑡) is angular displacement relative axis 𝑥, perpendicular to plane (𝑦, 𝑧) 

3.1. Determining parameters of the equivalent mechanical model of the boring bar in a 
discrete idealization 

Reduced mass 𝑚 , moment of inertia 𝐽 , stiffness coefficients 𝑐 , 𝑐  and 𝑐  are found 
from the equalities of kinetic and potential energies: 𝑇 = 𝑇 ,    𝑇 = 𝑇 ,    𝑇 = 𝑇 ,    П = П ,    П = П ,    П = П . (1) 

Of the initial (Fig. 2) and reduced (Fig. 3) models. In Eq. (1), the following expressions are 
given:  𝑇 = 12 𝑚 𝑞 (𝑡),   𝑇 = 12 𝑚 𝑞 (𝑡),   𝑇 = 12 𝑚 𝑞 (𝑡).  

Are kinetic energies of the discrete model for lateral and torsional vibrations relative axes 𝑦, 𝑧 and 𝑥, respectively. Here 𝑙, 𝑚, 𝜌, 𝐽  are the length, mass per unit length, density and polar 
moment of inertia of the boring bar. 

Substituting: 𝑦(𝑥, 𝑡) = 𝑉 (𝑥)𝑞 (𝑡),   𝑧(𝑥, 𝑡) = 𝑉 (𝑥)𝑞 (𝑡),   𝜑(𝑥, 𝑡) = 𝑉 (𝑥)𝑞 (𝑡). (2) 

Into Eq. (1) and keeping in mind that: 

𝑉 (𝑥) = − 𝑥2𝑙 + 32 𝑥𝑙 ,   𝑉 (𝑥) = 𝑉 (𝑥),   𝑉 (𝑥) = 𝑉 (𝑥),   𝑉 (𝑥) = 𝑥𝑙 .  
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Are first eigenshapes of the lateral and torsional vibrations of the boring bar, and equating the 
corresponding kinetic energies, one obtains, after simple transformations, expressions for reduced 
mass and reduced moment of inertia as 𝑚 = 0.24 ml, 𝐽 = 𝜌𝐽 𝑙/3. It should be noted that 
such representation of 𝑦(𝑥, 𝑡), 𝑧(𝑥, 𝑡) and 𝜑(𝑥, 𝑡) is possible, as numerous experimental studies 
testify to the fact [6] that self-excitation of lateral and torsional vibrations of the boring bar during 
deep boring takes place at the frequencies close to the first vibration eigen-frequencies of the 
boring bar. 

To determine stiffness coefficients 𝑐 , 𝑐  and 𝑐  one has: 

П = 12 Е𝐽 𝜕 𝑦(𝑥, 𝑡)𝜕𝑥 𝑑𝑥,    
П = 12 𝐸𝐽 𝜕 𝑧(𝑥, 𝑡)𝜕𝑥 𝑑𝑥, 
П = 12 𝐺𝐽 𝜕𝜑(𝑥, 𝑡)𝜕𝑥 𝑑𝑥, 

 

are potential energies of the distributed model for lateral and torsional vibrations, and: П = 12 𝑐 𝑞 (𝑡),   П = 12 𝑐 𝑞 (𝑡),   П = 12 𝑐 𝑞 (𝑡),  

are kinetic energies of the discrete model for lateral and torsional vibrations relative axes 𝑦, 𝑧 and 𝑥, respectively. Here, 𝐸𝐽 , 𝐸𝐽 , 𝐺𝐽 are bending and torsional stiffnesses of the cross-section of the 
boring bar.  

Using Eqs. (1) and (2), the stiffness coefficients are found: 

𝑐 = 𝑐 = 3𝐸𝐽𝑙 ,   𝑐 = 𝐺𝐽𝑙 ,   𝐽 = 𝐽 .  

Energy dissipation coefficients of the discrete model ℎ , ℎ  and ℎ  can be found, using the 
following relations:  

ℎ = ℎ = 𝑚 𝜔 Δ𝜋 ,   ℎ = 𝐽 𝜔 Δ𝜋 ,  

where 𝜔 , 𝜔 
 are first eigenfrequencies of the model, Δ is logarithmic decrement of vibrations, 

as obtained based on the experimental curves of damping vibrations. 

3.2. Equations of motion of the boring bar for boring deep orifices 

To derive equations of motion, kinetic 𝑇 and potential 𝑃 energies of the equivalent mechanical 
model in its discrete idealization are written as: 𝑇 = 12 𝑚 (𝑞 + �̂�𝑞 ) + 12 𝑚 𝑞 + 12 𝐽 𝑞 , 𝑃 = 12 (𝑐𝑞 + 𝑐𝑞 + 𝑐 𝑞 ). (3) 

Using second-kind Lagrange equations, Eq. (3) and linearized increments of projections of the 
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dynamic cutting force Δ𝐹  and Δ𝐹 , the equations of motion in 𝑐 will be written as: 𝑚 𝑞 (𝑡) + 𝑚 �̂�𝑞 (𝑡) + ℎ𝑞 (𝑡) + 𝑐𝑞 (𝑡) = −Δ𝐹 ,𝑚 𝑞 (𝑡) + ℎ𝑞 (𝑡) + 𝑐𝑞 (𝑡) = −Δ𝐹 ,(𝐽 + 𝑚 �̂� )𝑞 (𝑡) + 𝑚 �̂�𝑞 (𝑡) + ℎ 𝑞 (𝑡) + 𝑐 𝑞 (𝑡) = −Δ𝑀 , (4) 

where ℎ = ℎ = ℎ , 𝑐 = 𝑐 = 𝑐 , Δ𝑀 = Δ𝐹 𝑟 + Δ𝐹 �̂�, 𝑟 is outer radius of the boring bar, �̂� is 
static displacement of the reduced mass of the boring bar due to the effect of static cutting force 𝐹  in the process of boring, Δ𝐹  and Δ𝐹  are increments of projections of the dynamic cutting force 
on the axis of the coordinates, which are determined by dynamic forces induced by relative 
vibrations of the cutter and the part in the cutting zone at the moment, as well as by forces related 
with cutting the trail, and can be written with the account of the main cause of self-excitation of 
vibrations, lagging, in the following form [6, 7]: Δ𝐹 = 𝐾 (𝑞 (𝑡) + �̂�𝑞 (𝑡) − 𝜇(𝑞 (𝑡 − 𝜏) + �̂�𝑞 (𝑡 − 𝜏))),Δ𝐹 = 𝐾 (𝑞 (𝑡) + �̂�𝑞 (𝑡) − 𝜇(𝑞 (𝑡 − 𝜏) + �̂�𝑞 (𝑡 − 𝜏))), (5) 

where 𝐾 , 𝐾  are dynamic characteristics of cutting, and 𝜇 is overlapping coefficient  
(0 < 𝜇 ≤ 1). 

The experimental studies show that [1, 6] static displacement of the reduced mass under the 
effect of static force is about 2 mm, hence, it can be written that |𝐾 |𝑟 ≫ |𝐾 |�̂�. Thus, to simplify 
the further analysis, item Δ𝐹 �̂� in the expression for the cutting moment increment Δ𝑀  will be 
omitted. 

3.3. Method of D-decomposition using one complex parameter 

The problem of analyzing stability of equilibrium states of linearized systems with lagging is 
reduced to analyzing the position, relative an imaginary axis, of the roots of a characteristic 
equation, which in this particular case is a quasi-polynomial of the following form: 

𝑎 𝑝 𝑒 + 𝑤 𝑏 𝑝 𝑒 = 0, (6) 

where 𝑎  and 𝑏  are fixed complex numbers, and 𝜏 > 0 are fixed real numbers (lagging).  
Stability of such dynamic systems can be analyzed in two aspects [17]: firstly, stability for 

quite definite numerical values of its parameters can be studied; secondly, the task may be to find 
all the parameter values, for which the system is stable, that is, to find a stability region in the 
parameter space. The first way involves using well-known methods by Hourvitz, Korsakov and 
others, practically reduced to analyzing the determiners computed at chosen points of the 
parameter space. The second approach is especially important, as it makes it possible not only to 
construct a stability region in a multi-dimensional parameter space, but also to choose appropriate 
parameter values, belonging to this region, in designing products. It is this approach, which is 
implemented using the D-decomposition method [17], which consists in fixing a part of the 
parameters but one, or but two, etc. in the case of one parameter 𝑤 or if it also a linear part of 
Eq. (6), it can be considered complex and determined from Eq. (6): 

𝑤 = − ∑ 𝑎 (𝑝) 𝑒∑ 𝑏 (𝑝) 𝑒 . (7) 

Each point of the plane of complex parameter 𝜔 has corresponding polynomial Eq. (6) that 
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has certain numbers 𝑘 and 𝑛-𝑘 roots inside and outside region 𝐺. Thus, plane 𝑤 is subdivided into 
regions 𝐷(𝑘) with various number 𝑘 of roots in 𝐺. Either the right half-plane or the unit disc 
exterior can be taken as region 𝐺. Transition from one region 𝐷(𝑘) into another is only possible 
when one of the roots of the quasi-polynomial Eq. (6) crosses the boundary of region 𝐺. If the 
equation of the boundary of region 𝐺 is written in a parametric form: 𝑝 = 𝑔(𝜔), (8) 

where parameter 𝜔 varies in certain limits, then the equation of the border of the D-decomposition 
is determined after substituting Eq. (8) into Eq. (6) and takes the following form: 

𝑤 = − ∑ 𝑎 (𝑔(𝜔)) 𝑒 ( )∑ 𝑏 (𝑔(𝜔)) 𝑒 ( ) . (9) 

In each of the regions 𝐷(𝑘), number 𝑘 of roots of the quasi-polynomial Eq. (6) is the same. 
So, after constructing boundary Eq. (9) and determining 𝐷(𝑘)  regions, the problem of 
D-decomposition is reduced to computing the value of 𝑘 roots in any of the points of each 𝐷(𝑘) 
region. However, the bulk of the computations can be reduced if D-decomposition of plane 𝑤 is 
viewed as a result of point mapping of region 𝐺 onto plane 𝑤, using 𝑐 a mapping of the following 
form: 

𝑤 = − ∑ 𝑎 (𝑝) 𝑒∑ 𝑏 (𝑝) 𝑒 = 𝐻(𝑝). (10) 

Boundary 𝑁of D-decomposition is thus obtained as a mapping of region 𝐺  onto plane 𝑤 
according to Eq. (8). If any root 𝑟  belongs to the boundary of region 𝐺 , then point 𝑤 
corresponding to belongs to boundary 𝑁. Mapping Eq. (10) is characterized by conformity, that 
is, transformation of small vicinity 𝛿(𝑝 ) into vicinity 𝛿(𝑤) is done by radially extending it and 
turning to a certain angle. Let us introduce on the boundary of region 𝐺 a positive direction of 
traversal, so that region 𝐺 is always on the right. Then, due to conformity of the mapping onto 
plane 𝑤 the right side of boundary 𝑁 is a mapping of the right side of boundary 𝐺 inpoint 𝑝 . 
When point 𝑝  transfers from the right side of the boundary curve to the left one, it leaves region 𝐺, that is, number 𝑘 of roots inside region 𝐺 is reduced by one. It means that the corresponding 
point transfers from region 𝐷(𝑘) to region 𝐷(𝑘 − 1). This makes it possible, in determining 
regions 𝐷(𝑘), to determine number 𝑘 only in any single point of complex plane 𝑤, after which all 
the other points can be determined using the assumed rule of changing number 𝑘 when crossing 
the boundary 𝑁 of D-decomposition. In practice, when constructing boundary 𝑁, hatching is used, 
which corresponds to the hatching of the right side of the boundary of region 𝐺. Thus, when region 𝐺 is the right half-plane, boundary 𝑔(𝜔) is described by equation 𝑝 = 𝑖𝜔 (−∞ < 𝜔 < ∞), point 
mapping Eq. (10) can be written as: 

𝑤 = − ∑ 𝑎 (𝑖𝜔) 𝑒∑ 𝑏 (𝑖𝜔) 𝑒 = 𝐻(𝑖𝜔). (11) 

However, quasi-polynomials with an infinite number of roots correspond to lagging systems. 
Accordingly, the parameter space is subdivided into an infinite number of regions, and there exists 
region 𝐷(∞). The accompanying difficulties in practice turn out to be unessential, as it can be 
shown that a stability region (if there is any) is in the part of the region (which is determined by 
the robustness requirement) which has the following property: any of its internal parts is 
subdivided by a finite segment of D-curve into a finite number of parts. Thus, it is necessary, first, 
to find a region corresponding to quasi-polynomials with a finite number of roots with  
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𝑅𝑒𝑝 > 0, and then to construct D-decomposition inside it. 

3.4. Constructing D-decomposition of the plane of a single complex parameter 

Let characteristic quasi-polynomial Eq. (6) depend on a single parameter 𝑤, linearly contained 
in its coefficients. 

First, it is necessary to discern 𝜔-plane filled with quasi-polynomials with a finite number of 
roots to the right of the imaginary axis, and then to seek a stability region inside it. This region is 
defined by the following inequality: |𝑎 + 𝑤𝑏 | − |𝑎 + 𝑤𝑏 | − ⋯ − |𝑎 + 𝑤𝑏 | ≥ 0, (12) 

which represents a sufficient and necessary condition for a quasi-polynomial to belong to set 𝐷(𝑠), 
where 𝑠 is finite. 

Further on, the rules of constructing the boundary and its hatching remain the same as for 
polynomials. 

1) Construct a boundary of D-decomposition of complex plane 𝜔  according to Eq. (11)  −∞ < 𝜔 < +∞.  
2) Separate the real part of Eq. (11) from the imaginary one, that is, reduce it to the form of 𝑤 = 𝑢(𝜔) + 𝑖𝑣(𝜔). 
3) Taking along axes 𝑢 and 𝑣 the related values, construct a curve, which is obtained if 𝜔 takes 

all the values from 0 < 𝜔 ≤ +∞. 
4) Complement this curve with its mirror image relative axis 𝑢 , that is, with its branch 

corresponding to −∞ < 𝜔 < 0. 
5) Moving along this curve from the point corresponding to 𝜔 = −∞, to point 𝜔 = +∞, hatch 

the right side of the curve.  
6) For a single value of 𝜔, determine by some way the number of roots of the quasi-polynomial 

with the positive real part. 
It suffices to know the root distribution relative the imaginary axis, and, if it is possible to get 

from point 𝐴 to point 𝐵 crossing the boundary of D-decomposition 𝑧  times from the hatched side 
and 𝑧  times from the unhatched side, then there is a quasi-polynomial corresponding to point 𝐵, 
which has 𝑘 + 𝑧 + 𝑧  roots to the right of the imaginary axis. Thus, stability region 𝐷(0) is found. 

Only real values of 𝜔 are of practical interest. Hence, after constructing D-decompositions of 
plane 𝜔 and determining the number of roots corresponding to each region, it is necessary to 
determine the segment of the real axis belonging to the stability region. 

3.5. Analysis of stability 

Stability in small of the equilibrium state of system Eq. (4) is analyzed using the  
D-decomposition method with one complex parameter described in 3.4. After simple 
transformations, a characteristic equation is obtained in the form of a quasi-polynomial: 𝑃 (𝑝) + (𝐾 (𝑝)𝑟�̂�𝑃 (𝑝) + 𝐾 (𝑝)𝑃 (𝑝))(1 − 𝜇𝑒 ) = 0,  

where: 𝑃 (𝑝) = 𝑃 (𝑝)𝑃 (𝑝) − 𝑚 �̂� 𝑝 ,   𝑃 (𝑝) = 𝑚 𝑝 + ℎ𝑝 + 𝑐,   𝑃 (𝑝) = 𝑃 (𝑝) − 𝑚 𝑝 ,   𝑃 (𝑝) = (𝐽 + 𝑚 �̂� )𝑝 + ℎ 𝑝 + 𝑐 ,   𝑃 (𝑝) = 𝑃 (𝑝) − 𝑚 �̂� 𝑝 .   

It is known from experimental studies [6] that, when boring with sharp-ground cutters, 
dynamic characteristics of cutting 𝐾 (𝑝), 𝐾 (𝑝) remain proportional to cutting depth 𝑏, and 
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thus can be written as 𝐾 (𝑝) = 𝑏𝐾 (𝑝)  and 𝐾 (𝑝) = 𝑏𝐾 (𝑝) . Then, in the characteristic 
equation, parameter 𝑊(𝑝) = –1/𝑏 can be chosen, and the equation of D-decomposition curve will 
have the following form: 

𝑊(𝑝) = (𝑃 (𝑝)𝐾 (𝑝) + 𝑃 (𝑝)𝐾 (𝑝)𝑟�̂�)(1 − 𝜇𝑒 )𝑃 (𝑝) , (13) 

where 𝑝 = 𝑖𝜔, 𝜔 ⊂ (−∞, +∞). 
With such a structure of the characteristic equation, the robustness requirement is not violated 

and need not be corroborated, as a set of limit points of D-decomposition curve for 𝜔 → ∞ 
concentrate in point 𝑊 = 0. It also follows therefrom that on plane 𝑊there are no regions 𝐷(∞), 
with a possible exception of one point 𝑊 = 0. A set of points constructed using Eq. (13) for  𝜔 ⊂ 0, +∞) represent a hodograph determining the structure of D-decomposition of the plane of 
parameter 𝑊(𝑝). When varying 𝜔 from –∞ to +∞ the hodograph becomes a mirror image of the 
constructed hodograph relative real axis 𝑅𝑒(𝑊(𝑖𝜔)). Keeping in mind the hatching rule, stability 
region 𝐷(0) is found. The intersection of the hodograph with the negative real axis will determine 
maximal cutting depth 𝑏. 

3.6. Results of numerical experiments 

Fig. 4 shows D-decomposition along the plane of complex parameter 𝑊 for 𝜔 ⊂ (0, +∞) 
with the following values of the parameters of the system: boring bar length 𝑙 = 3.5 m, external 
and internal radii of the boring bar 𝑟 = 0.04 m, 𝑟 = 0.035 m, respectively, cutting velocity 𝑉 = 90 m/min; feeding 𝑆 = 0.1 mm/rev. Keeping in mind the hatching rule, stability region 𝐷(0) 
is found. The intersection of D-decomposition curve with the negative real half-axis determines 
limiting cutting depth 𝑏 =  3.3·10-2 m. The second part of D-decomposition curve for  𝜔 ⊂ (−∞, 0) is a mirror image of the constructed curve relative the real axis. 

 
Fig. 4. D-decomposition along the plane of complex parameter 𝑊 

Figs. 5, 6 depict in the plane of parameters 𝑉, 𝑏 the boundaries of the stability regions for the 
values of feeding 𝑆 =  0.1, 0.2, 0.3 mm/rev, boring bar length 𝑙 =  3 m (Fig. 5) and  𝑙 = 3.5 m (Fig. 6), boring bar radii 𝑟 = 0.04 m, 𝑟 = 0.035 m. The stability regions of the 
equilibrium state are below the boundaries of the stability regions. 

It is evident from Figs. 5, 6 that the maximal cutting depth grows with the feeding and cutting 
velocity (the stability region increases), whereas when the boring bar length increases the maximal 
cutting depth decreases (the stability region decreases). It is to be noted that the obtained results 
of numerical studies using the developed mathematical model are in good agreement with the 
experimental data from [8-16].  
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Fig. 5. Stability regions for various feedings 

 
Fig. 6. Stability regions for various feedings 

Igumnov L. A. formulation of the problem and supervision of the research. Metrikin V. S. 
development of numerical and analytical methods of calculations. Lyubimov A. K. development 
of a mathematical model of a distributed system. Ovchinnikov V. F. development of the method 
of transition from a distributed mathematical model to a discrete one. Grezina A. V. carrying out 
and processing of numerical experiments. 

4. Conclusions 

1) A mathematical model describing coupled torsional and lateral vibrations of a boring bar in 
deep boring has been developed. 

2) A methodology of analyzing stability of the equilibrium state using one complex parameter 
for a system with lagging is presented.  

3) It is found that the stability region increases with the feeding and cutting velocity, and 
decreases with the increase of the boring bar length. 

4) The effect of the parameters of the mathematical model (feeding and cutting velocity, boring 
bar length) on the value of maximal cutting depth has been analyzed. 

5) The results of the numerical-analytical investigation are in good agreement with the 
experimental ones. 
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