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Abstract. A no spill-over method is developed which uses measured normal modes and natural
frequencies to adjust a structural dynamics model in light of displacement feedback technique. By
the method, the required displacement feedback gain matrix is determined, and thus the updated
stiffness matrix which satisfies the characteristic equation is found in the Frobenius norm sense
and the large number of unmeasured high-order modal data of the original model is preserved.
The method directly identifies, without iteration, and the solution of this problem is of a compact
expression. The numerical example shows that the modal measured data are better incorporated
into the updated model.

Keywords: model updating, undamped vibration system, displacement feedback, modal
measured data, optimal approximation.

1. Introduction

After spatial discretization by using the finite element method, the equation of motion of a
linear elastic time-invariant structure with n degrees of freedom is given by:

Mq(t) + Koq(t) = £(0). (1)

In which M, € R™", analytical mass matrix, is symmetric positive definite and K, € R™*",
analytical stiffness matrix, is symmetric positive semidefinite. q(t) € R™ ! is the displacement
vector and f(t) € R™ ! is the external force vector. Eq. (1) is known as the finite element (FE)

analytical model of the structure. Let q(t) = xe®? be a soluton of the homogeneous part of
Eq. (1), then we can get the following eigenvalue-eigenvector equation:

Kox; = 4iMyx;, j=12,---,n, 2)

where 4; = w?. Let:

A= [31 ?\2], X =[X1,X,],

where:

Ay = diag{Ay, -, A}, Ay = diag {Apyy, - A} X1 =[x %] Xy = Xy, o, Xl
Then Eq. (2) can be equivalently written as:

M XA = K X. (3)

Assume that the modal orthogonality relationship is satisfied:

[ﬁ] M[Xy, X,] = I, (4)
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By substituting Eq. (4) into Eq. (3), we can get another orthogonality relation:
XT
A AP AR ©)
2

When active control forces are exerted on an undamped vibration system, Eq. (1) now becomes:

Maq(t) + Kqq(t) = Bu(t), (6)

where B € R™™ is the full column rank control feedback matrix and u(t) € R™*? is the control
vector. In discussing the feedback control, we assume that the control vector u(t) is defined by
the control law:

u(t) = —Fq(t), (7)

where F € R™ ™ is displacement feedback gain matrix. By substituting Eq. (7) into Eq. (6) yields
the following closed-loop system:

M.q(t) + (Ko + BF)q(t) = 0. ®)

iwt

Separation of variables by q(t) = ye
of Eq. (8) as follows:

, which leads to the generalized eigenvalue problems

ojMuy; = (Ko + BF)y;, j=1--,n )

where 0; = w?.

In engineering practice, accurate mathematical models are required in order to predict their
dynamic characteristics accurately. However, current FE analysis cannot provide sufficiently
accurate FE models, which are in good agreement with measured results. A vibration engineer
then faces the problem of updating the existing FE model with minimal changes so that the updated
FE model can better reflect the measured data from the physical structure being modelled [1]. The
updated model may then be considered a better predictions of the responses of the structure, and
can be used with greater confidence for damage detection, health monitoring and structural
control, and so on.

Model updating techniques are now extensively developed and studied for the structural
systems. For undamped systems, to update coefficient matrices using vibration test data by means
of direct matrix-updating methods has been considered by Thoren [2], Baruch and Bar-Itzhack [3],
Berman and Nagy [4], Wei [5], Modak et al. [6], Yang and Chen [7], Yuan [8], Yuen [9], Yuan
and Liu [10], Modak [11] and Sarmadi et al. [12]. For damped structural systems, the theory and
methods have been discussed by Friswell et al. [13], Kuo et al. [14], Bai [15], Lancaster [16],
Yuan and Dai [17], Yuan and Liu [18] and Mao and Dai [19]. Carvalho et al. [20] presented a
numerical method for the stiffness matrix updating problem in an undamped model. by the IMDH
(incomplete measured data handling) method, they overcame the difficulty of the incomplete
measured data in an algorithmic way without using standard modal expansion or reduction
techniques. The method is also capable of preserving the large number of eigendata of the FE
model that are not affected by updating. Very more recently, Sehgal and Kumar [21] presented a
review of structural dynamic model updating techniques. A number of direct and iterative
techniques of model updating along with their applications to real life systems are reviewed and a
number of future research directions have been highlighted which can be used for further
advancements in the field of model updating.

It is of practical importance for updating an existent model that the newly measured
parameters enter the system without altering other unrelated high-order vibration parameters. Such
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an updating is known as no spill-over. Assume that A; € RP*P_ X, € R™P are known for the first
p eigenvalues and associated eigenvectors of the original system. The remaining n — p unknown
eigenpairs A, € RP*(®=P) apnd X, € R™ (™ P) remain unchanged. Some explanations for
updating with no spill-over being required see the Ref. [32].

The aim of this paper is to modify the stiffness matrix by using the displacement feedback so
that the modified second-order system Eq. (8) will contain a number of measured eigenvalues and
eigenvectors. Mathematically, the problem of updating stiffness matrix with no spill-over by
displacement feedback, therefore, can be stated as follows.

Problem 1. Let BER™™ be a full column rank matrix. Assume that
X, = diag{oy,-,0,} E RP*? and Y; = [yy, -, y,] € R™P are respectively the measured
eigenvalue and eigenvector matrices, where p « n. Find displacement feedback gain matrix
F € R™ ™ guch that:

M X,A, = KX,, (10)
M,Y,%, = KY,, (11)

where K = K, + BF and K = KT. Generally, the solution of Problem 1 is not unique. Thus, we
need to solve the following least-squares approximation problem.
Problem 2. Find F € S such that:

IBF]l = minllBF1I, (12)

where S is the solution set of Problem 1. Once the solution F of Problem 2 is obtained, the
updated stiffness matrix can be expressed as:

K =K, + BF. (13)

Many structural components are generally subjected to dynamic loadings in their working life.
Very often these components may have to perform in severe dynamic environment where in the
maximum damage results from the resonant vibration [22]. Therefore, in order to avoid the
undesired phenomena, one way is to use feedback control so that the unfavorable eigendata are
replaced by some suitable ones [23-26]. The idea of using the eigenstructure assignment technique
to solve the model updating problem has been considered by [27, 28]. The method can produce
an updated FE model on damping and stiffness matrices that matches the measured modal data.
More recently, Ouyang and Zhang [29] addressed passive structural modifications of mass-spring
systems for partial assignment of natural frequencies, two solution methods were proposed to
construct the required mass-normalised stiffness matrix, which satisfies the partial assignment
requirement of natural frequencies and maintains the configuration of the original structure after
modifications. Sen and Bhattacharya [30] adopted a control theory-based eigenstructure
assignment technique to update the FE model of a linear time-invariant system. The proposed
method uses state feedback to produce the gain matrix which in turn updates the existing system
matrices through simultaneous assignment of eigenvalue and eigenvector pairs in the FE model
generated system matrices. Richiedei and Trevisani [31] introduced a novel hybrid method for
vibration control in lightly damped systems through the concurrent synthesis of passive structural
modifications and active state feedback control gains. The passive modifications alter the set of
eigenvectors that can be achieved through state feedback control and gives additional degrees of
freedom in the controller synthesis, which overcoming the limitations of eigenstructure
assignment through active control used alone.

It should be mentioned that the studies by Zhang et al. [33-35], Chu and Datta [23], Nichols
and Kautsky [24], Datta et al. [25] and Lin and Wang [26] lead to a feedback design problem for
a second-order control system. That consideration eventually results in either a full or a partial
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eigenstructure assignment for the eigenvalue problem. Nonetheless, these results cannot meet the
basic requirement that the updated matrices should be symmetric. Our main contribution is to
provide a new numerical method to solve the FE model updating problem using displacement
feedback technique and the updated model has the following properties:

» The measured eigenvalues and eigenvectors will be embedded in the updated model.

* The updated stiffness matrix is also symmetric and positive semidefinite.

* The eigenvalues and eigenvectors corresponding to the unmeasured ones remain unchanged.

* The difference between the updated model and the original model is minimal.

The method directly identifies, without iteration, and works directly on the second-order
system model. More importantly, the approach allows the control matrix to be specified
beforehand and also leads naturally to a small norm solution of the feedback gain matrices. We
believe that the method proposed should give considerable insight into the important model
updating problem.

In what follows, in Section 2, by using the QR-decomposition and the singular value
decomposition (SVD) of matrices, we provide a necessary and sufficient condition for the set Sg
to be nonempty and construct the set Sg explicitly when it’s nonempty. In Section 3, when the set
Sg is nonempty, we show that the solution of Problem 2 is unique and present the explicit
expression of the unique solution F of this problem. In Section 4, a numerical algorithm is
proposed to determine the displacement feedback gain matrix and a numerical example is provided
to demonstrate the effectiveness of the proposed method.

As usual, let R™*" be the set of all m X n real matrices and SR™*" the set of alln X n
symmetric matrices in R™™ . AT, A* and ||A|| denote the transpose, the Moore-Penrose
generalized inverse and the Frobenius norm of the matrix A4, respectively. I,, denotes the identity
matrix of order n.

2. The solution of Problem 1

In order to solve Problem 1, the following two lemmas are needed.

Lemma 1. If ¥ € R™, Z € R™4, then YN = Z has a solution N € R if and only if
YY*Z =7Z. In which case, the general solution of YN =7 can be expressed as
N =Y*Z+ (I, - Y*Y)L, where L € R" is an arbitrary matrix [36].

Lemma 2. Suppose that A, B € R™P then the matrix equation AY = B has a symmetric
solution ¥ € SRP*? if and only if [37]:

BAT = ABT,  AA*B =B,
in which case, the general symmetric solution is:

V= A*B + (I, — A*A)(A*B)T + (I, — A* D) (1, — A* ),

where | € SRP*? is an arbitrary symmetric matrix.
Let:

BF =AK, s.t. AKT = AK. (14)
Assume that the QR-decomposition of B is:
_ A[R

B=0l,) (15)

where Q = [Q;, Q,] is ann X n orthogonal matrix (Q; € R™™) and R is an m X m nonsingular
matrix. By Lemma 1 and Eq. (15), Eq. (14) with respect to F is solvable if and only if:
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TAK =0, (16)
and thus the unique solution can be represented as:
F = BYAK = R71QTAK. 17)

By Lemma 2, Eq. (16) always has a symmetric solution AK and the general symmetric
solution is:

AK = 0,507, (18)
where § € SR™ ™ is an arbitrary symmetric matrix. Substituting Eq. (18) into Eq. (17), we obtain:
F = R™1SQT. (19)
By Egs. (4) and (5), we get:
MY =X, XT + X, X5, M7'K, M7t = XA XT + XoA0 X7 20)
Using Eq. (20) and noting that X, is of full column rank, Eq. (10) is equivalent to:
M,T = KP, 21)
where T = MK ,M;* — X, A XT, P = M;' — X, XT. In practice, the matrices X, and A, in
Eq. (10) are usually unknown, we notice that the matrices X, and A, don’t appear in Eq. (21)
explicitly. It follows from Eq. (21) that:
M,T = KP & AKP = M,T — K,P.
Observe that:

M,T — K,P = Mg(Mz' K Mz — XA XT) — Ko (Mg — X1 XT)
= K X, XT — M X, A\ XT = 0.

That is, Eq. (10) is equivalent to:

AKP = 0. (22)
Substituting Eq. (18) into Eq. (22), we obtain:

Q1SQ{P =0,

which implies that:

SQTP = 0. (23)
Assume that the singular value decomposition (SVD) of QT P is:

orp=uly olvn, (24)

where © = diag {6y,-+,6,}, 6; >0, j=1,--,1, l = rank (Q{ P). U = [Uy,U,] € R™™ and

V = [V, V,] € R™™ are orthogonal matrices, U; € R™* V; € R,

Using Lemma 2 again, the general symmetric solution of Eq. (23) is:
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S = U,HUT, (25)

where H € SR(™=DX(M=D i5 an arbitrary symmetric matrix. By substituting Eq. (25) into Eq. (18),
we obtain the general symmetric solution of Egs. (10) and (14) as:

AK = Q,U,HUZ Qf, (26)

where H € SR(™=D*(m=D) ig an arbitrary symmetric matrix.
Now, to solve Problem 1 is equivalent to finding symmetric matrix H such that:

W HWTY, = M Y,%, — K.Yy, 27)

where W, = Q,U,. Observe that WIW, =1,_,, if let W,=[Q,U;,Q,], then
WIW, = I,_pmy and W = [W,W,] € R™™ be an othogonal matrix. Thus, the equation of
Eq. (27) can be equivalently written as:

WZT(Maylzl —K.Y;1) =0, (28)
HWlTyl = W]_T(Maylzl - Kayl)- (29)
Let the SVD of WY, be:
v 1 [¥ 0],r
Wiy, =1L [0 0]] ’ (30)
where:

Y = diag {1, ¥}, ¥; >0, i=1,---,t, t= rank (WTY,),
L = [Ly, L] € RWDX0n=D =[], ],] € RPXP

are orthogonal matrices, L; € R™™D*t | € RPXt, By Lemma 2, Eq. (29) has a symmetric
solution H if and only if:

WIAWTIY)TWTY, = WA, YTw,wlA=ATwW,WTy,. (€28)
In which case, the general symmetric solution is:
H=W{AWY)* + W] AW Y) ") Uy — WL (W YD) + LoGL, (32)
where A = MY, %, — K, Y, and G € SRM~1=0%(m=1=0) jg an arbitrary symmetric matrix.
As a summary, we can get the following result.
Theorem 1. Let the QR-decomposition of B be given by Eq. (15) and the SVD of the matrix
TP be given by Eq. (24). Assume that W, = Q,U,, W, = [Q,U;, Q,] and the SVD of the matrix

W'Y, is given by Eq. (30). If the conditions (28) and (31) hold, then Problem 1 is solvable and
the solution set S; of Problem 1 can be expressed as:

S = {F € R™"™|F = R~'U,HUT QT},

where P =M, — X, XT, A=MYZ, —K,Y;, and H is given by Eq.(32) and
G € SRM=1=0%(M=1=0) 5 an arbitrary symmetric matrix.

3. The solution of Problem 2

It has been shown in Section 2 that if the conditions (28) and (31) are satisfied, the solution set
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S is nonempty. Clearly, Sg is a closed convex subset of R™*™ It follows from the best
approximation theorem [38] that there exists a unique solution F in Sy such that Eq. (12) holds.
Now, we will seek the unique solution F in S;. For F € S, we can get:

IBF| =1L|IIQlészU2TQlTII = W HW || = (WTW HW W ||
- ”[o 0]” = [lH1

where W = [W;, W,]. Thus, by Eq. (32) we can obtain:

IBFII> = ||H + LoGLS|I* = IIL" (Ho + LoGLY)L|I?
_ | [LIHOL1 LTH,L,

2
e 0 | = MOl + B HOLI + LS H L, + GIP,
24401 2440402
where:

Hy = WFAWEY)Y + WTAWTIY)DTU — WL, (WTYD™). (33)
Therefore, ||BF|| = min if and only if:

G = —LYH,L,. (34)
By substituting Eq. (34) into Eqgs. (19) and (32), we obtain the following result.

Theorem 2. If the conditions (28) and (31) hold, then Problem 2 has a unique solution and it
can be described as:

F =RU,HUI O], (35)
where:
H=H,— L,L5H,L,L%, (36)

and H, is given by Eq. (33).
4. A numerical example

Based on Theorems 1 and 2 we can establish an algorithm for solving Problems 1 and 2 as
follows.
Algorithm.
1) Input M, K., B, X1, Aq, Z4, 15,
2) Compute the QR-decomposition of B by Eq. (15).
3) Compute P = M;' — X, XT and the SVD of the matrix Q7 P by Eq. (24).
4) Compute W; = Q,U, and W, = [Q,U;,Q,], and the SVD of the matrix WY; by
Eq. (30).
5) Compute A = M, Y,Z, — K, Y;.
6) If the conditions (28) and (31) hold, then continue, otherwise, go to 1).
7) Compute H, and H by Egs. (33) and (36), respectively.
8) Compute F by Eq. (35).
9) Compute K by Eq. (13).
Example. Consider a cantilever beam model (see, Fig. 1). The cross section of the beam is
rectangular with length 2 m, width 60 mm and height 3 mm, respectively. The material of the
cantilever beam is aluminum alloy with the modulus of elasticity = 71 GPa, Poisson ratio = 0.33

© JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. NOV 2017, VOL. 19, ISSUE 7. ISSN 1392-8716 5 1 55



2661. STIFFNESS MATRIX MODIFICATION WITH VIBRATION TEST DATA BY DISPLACEMENT FEEDBACK TECHNIQUE.
YONGXIN YUAN

and mass density = 2.714x10% N/mm?. The beam is discretised into 10 elements shown in Fig. 1.

Fig. 1. The model of a cantilever beam

The mass matrix of the FE model is diagonal and the stiffness matrix is 3-diagonal, which are
given by:

M, = diag {0.0997, 0.0997, 0.0997, 0.0997, 0.0997, 0.0997,
0.0997, 0.0997, 0.0997, 0.0498},
[ 28755 —14378 0 0 0 0 0 0 0 0
—14378 28755 —14378 0 0 0 0 0 0 0
0 —14378 28755 —14378 0 0 0 0 0 0
0 0 —14378 28755 —14378 0 0 0 0 0
K = 0 0 0 —14378 28755 —14378 0 0 0 0
@ 0 0 0 0 —14378 28755 —14378 0 0 0
0 0 0 0 0 —14378 28755 —14378 0 0
0 0 0 0 0 0 —14378 28755 —14378 0
0 0 0 0 0 0 0 —14378 28755 —14378
0 0 0 0 0 0 0 0 —14378 14378 -
A and X; are given by:
r 0.2216  —0.64306 —1.0016
0.43773 —1.1459 —-1.4164
0.64309 —1.3989 —1.0014
3542.3 0 0 0.8326 —1.347 0.00026323
A, = 0 31431 0 X = 1.0016 —1.0014 1.0018
0 0 84477\’ ! 1.1459 —0.43742 1.4164
1.262 0.22188 1.0012
13471 0.83281 —0.00052646
1.3989 1.2622 —1.0019
L 1.4163 1.4164 —1.4164
The measured modal data are given by:
(—0.19769 —0.39804  0.70546 1
—-0.37712 —0.7149 1
—0.52683 —0.88309 0.71252
—0.64539 -0.86194 0.01126
5, = 68?)0'3 34(6)57 8 ’ Y, = —0.73952 -—0.64814 —0.6951 .
0 0 87519 —0.81844 —0.2805 —0.99674
—0.8876  0.16449  —0.72222
—0.94563 0.58764 —0.038058
—0.98562 0.89032 0.64988
-1 1 0.93509 -

Let control feedback matrix B be:

5156
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[9.0206e — 017 —0.013541 -0.12815 0.36264
0.35388 —-0.072726 —0.24211 0.53765
—0.45575 —0.19181 —0.32024 0.44423
0.14096 —0.34151 —0.33384 0.15324
B = —0.12794 —0.46385 —0.25796 —0.15566
0.30127 —0.50566 —0.08754 —0.29933]
0.11106 —0.45106 0.15068 —0.1971
—0.62835 —0.33348 0.39956 0.084173
0.36456 —0.21942  0.58834 0.37206
18.3267e — 017 —0.08628  0.32903 0.24579

It is easy to check that the conditions (28) and (31) hold:

||W2T(May121 - KaY1)” = 3.7989¢ — 011,
||W1TA(W1TY1)+W1TY1 - W]_TA” = 4.52976 - 013,
YT w,WlA — ATW,W]Y,|| = 3.005e — 011.

By the Algorithm, we can obtain the following unique solution of Problem 2:

(—1.4248e — 014 67.459 —98.657 106.18 T
—2.2092e — 014 88.246 —155.53 158.09
—2.0327e — 014 42.007 —1484 130.64
—1.0395e — 014 -54.103 -—-83.778 40.537
A 2.669e — 015 —155.7 8.6985 —64.427
1.3126e — 014 —216.78 93.102 —133.09(
1.7578e — 014  —215.7 14536 —139.3
1.6446e — 014 —166.45 162.77 —94.79
1.3131e — 014 —-108.89 160.22 —39.389
L 5.7334e — 015 —41968 78221 —7.521-

In which case, the optimal updated stiffness matrix can be figured out.

K =K, +BF
r 28805 —14302 65.822 26.169 —22.37 —57.257—66.223—-52.978—-33.341—-12.183
—14302 28871 —14275 46.013 —25.422-78.329-94.401—-78.266—52.049—-19.929
65.822 —14275 28852 —14323 —1.5409—-47.354—67.057—-62.305 —47.92 —20.34
26.169 46.013 —14323 28808 —14338 22.558 3.7905 —12.02 —22.336—12.933
—22.37 —25.422-1.5409 —14338 28835 —14281 84.24 49976 15.311 0.46016
—57.257—78.329—47.354 22.558 —14281 28896 —14240 98.291 52.827 16.625 |
—66.223-94.401—-67.057 3.7905 84.24 —14240 28902 —14260 81.024 32.199
—52.978-78.266—62.305 —12.02 49.976 98.291 —14260 28868 —14281 44.616
—33.341-52.049 —47.92 —22.336 15.311 52.827 81.024 —14281 28859 —14326
L-12.183-19.929 —20.34 —12.9330.46016 16.625 32.199 44.616 —14326 14406

Fig. 2 indicates the absolute values of the stiffness discrepancy matrix obtained from the
proposed model updating method. We define the residual as:

res (0, y;) =Il o;May; — Ky; I,

and the numerical results are shown in the Tables 1 and 2.
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SDM (N/m)

Number of rows 1
Number of columns

Fig. 2. The absolute values of the stiffness discrepancy matrix (SDM) using the proposed method
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Fig. 4. The frequencies of the analytical
and updated models

Fig. 3. The frequencies of the measured
and updated models

Table 1 shows that the measured modal data are embedded in the new model M, Y;%, = KY;
(Fig. 3 shows the comparison of frequencies of the measured model with the updated model) and
Table 2 implies that the model is updated with no spill-over (Fig. 4 shows the comparison of
frequencies of the analysis model with the updated model) and the updated stiffness matrix is also
symmetric and positive definite.

Table 1. Numerical results

Table 2. Numerical results

Eigenpairs | res (0;,y;) Eigenpairs | res (4;,X;)
(01,y1) | 1.6404e-011 (A4, X4) | 7.0668e-011
(02,¥2) | 3.0154e-011 (As,x5) | 6.7161e-011
(03,y3) | 2.2863e-011 (A6,Xg) | 3.3355¢-011
(A7,x7) | 2.1904e-011
(Ag,xg) | 2.7824e-011
(A9, X9) 5.457e-011
(A19,X419) | 6.671e-011

5. Conclusions

A no spill-over direct updating method for undamped vibration systems with vibration test
data using displacement feedback technique has been presented. When the conditions (28) and
(31) hold, the required displacement feedback gain matrix can be determined, and the optimal
updated stiffness matrix which satisfies the characteristic equation can be achieved. The method
is easy to implement, and allows the control matrix to be specified beforehand. Although the
proposed method can guarantee that the updated matrix is symmetric and positive semidefinite, it

5158
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failed to preserve the pattern of the FE stiffness matrix. How to maintain the physical connectivity
of the updated matrix is worthy of further study.
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