
 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. DEC 2017, VOL. 19, ISSUE 8. ISSN 1392-8716 6413 

2752. Propagation of rotational waves in a block 
geomedium 

Vladimir I. Erofeev1, Anna V. Leontyeva2, Igor S. Pavlov3 
1, 2, 3Mechanical Engineering Research Institute of the Russian Academy of Sciences,  
Nizhny Novgorod, Russia 
1, 3Nizhny Novgorod Lobachevsky State University, Nizhny Novgorod, Russia 
3Corresponding author 
E-mail: 1erof.vi@yandex.ru, 2aleonav@mail.ru, 3ispavlov@mail.ru 
Received 14 March 2017; received in revised form 10 July 2017; accepted 18 July 2017 
DOI https://doi.org/10.21595/jve.2017.18344 

Abstract. On the base of assumption that the rotational movements of the chain of the crust blocks 
and the corresponding rotational waves characterizing the redistribution of tectonic stresses are 
described by the sine-Gordon equation with dissipation, the dispersion properties of this equation 
are analyzed. It is shown that the dispersion is manifested in the low-frequency range at high 
values of the dissipation factor. The presence of anomalous dispersion has been revealed for all 
values of the dissipation factor. Influence of this factor on dispersion is investigated. Some 
features of propagation of a stationary shock wave in a geomedium are studied. It has been found 
that the shock wave front width is directly proportional to the nonlinear wave velocity and to the 
dissipation factor of the medium, but it is inversely proportional to the nonlinearity coefficient. 
Keywords: geodynamics, block medium, rotational waves, sine-Gordon equation with  
dissipation, abnormal dispersion, a stationary shock wave. 

1. Introduction 

The classical theory of elasticity is based on idea that solid is a continuum of material points 
possessing only translational degrees of freedom. However, phenomena are frequently observed 
in the nature, which can be explained by the rotational dynamics of individual particles of a 
medium, independently on the absolute particle size [1-4]. Consideration of solids with internal 
degrees of freedom led to the construction of the Cosserat, Mindlin-Eringen, Leroux continual-
phenomenological models, as well as other generalized continua [3-5]. At present, structural 
models are developed for advanced materials with micro- and nanostructure [6-10]. 

On the other hand, recent data of geological and geophysical research argue that the Earth’s 
crust consists of non-point particles-blocks that are able to rotate. Thus, according to [2, 11], the 
state of the Earth’s crust is determined by the “inner motion potentialz’ [12] and “self-energy” 
[13]. Within the scope of the mechanical concept, motion with such properties [11, 12] can occur 
only under the influence of own angular momentums of the blocks, in fact, their spins [14]. 
Interaction of the blocks determines both the motion of the Earth’s crust as a whole and its 
“volume flowing in the cold state” [15] and / or its rheidity properties [16]. The Earth’s rotation 
around its axis with angular velocity Ω and the rotational movements of crust blocks provided by 
“own moments” ܬΩ, where ܬ is the moment of inertia of the spherical block, play an important 
role in geodynamics.  

So, geophysical observations made during a long time interval enabled one, for example, to 
formulate a conclusion that Easter Island (300×400 km2) in the Pacific Ocean for 5 million years 
(it is time of its existence) has turned almost by 90° [17] that corresponds to the angular velocity 
 rad/5·106 years ≈ 3·10-7 rad/year. Moreover, Siberian platform performs a rather complex ߨ0.5
motion as a rigid plate. In the period 2.5-1 billion years ago it was located, mainly, in the equatorial 
and low northern latitudes, performing quasi-oscillation rotations relative to the meridian with 
amplitude up to 45°, whereas in the period 1.6-1 billion years ago it turned counterclockwise at 
the angle of about 90° [18]. 

On the basis of these data, A. V. Vikulin with his co-authors developed a “rotational” approach 
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to solving geodynamic problems (see, for example, [16, 19]). This approach is based on the 
following assumptions: an elementary part of the rotating solid body – the Earth’s crust block – 
is, first of all, a rigid non-deformable volume; secondly, its motion occurs under the action of its 
own moment; thirdly, such a motion leads to change of the stress state of the crust surrounding 
the block [16]. Within the framework of this rotational model it is possible to describe the whole 
range of geodynamic velocities of rotational waves that are typical both for geophysical and 
geological processes – from slow rotational waves characterizing redistribution of tectonic stresses 
up to fast seismic waves [16, 20, 21]. Further, in accordance with this approach, we shall consider 
motion of two interacting crust blocks in a geomedium rotating with angular velocity Ω. 

2. Rotational movements of crust blocks 

The interaction energy of two crust blocks located at a distance of ݈ from each other and 
possessing radiuses ܴ଴ଵ and ܴ଴ଶ is calculated by the equation [20]: 

௜ܹ௡௧ = 32 Ωଶܴ଴ଵସߩߨ ܴ଴ଶସ ݈ିଷcos߮, (1)

where ߮ is the angle between the moments of the blocks. Due to this energy, each block tends to 
turn the other block. The torque caused by the interaction of blocks is determined by deriving  
Eq. (1) with respect to angle ߮: 

௜௡௧ܭ = − 32 Ωଶܴ଴ଵସߩߨ ܴ଴ଶସ ݈ିଷsin߮. (2)

The torque Eq. (2) is applied to the surface of each of the blocks from the side of elastic field 
and is directed by such a way in order to decrease their interaction energy. This torque has the 
same magnitude for both blocks, but it is directed in opposite sides for different blocks. In this 
case, the angles of rotation of the blocks – the centers of earthquakes [16] – are equal to 10-4-10-2 
rad. It means that, if earthquakes occur in one place every 100-1000 years, the angular velocity 
equals 10-7-10-4 rad. 

Rotational movements of a block generating its own elastic field and, in accordance with  
Eqs. (1) and (2), interacting with their own elastic fields of other equally large blocks of the chain 
are described by sine-Gordon equation in the dimensionless form [16]: ߲ଶ߲߮ݐଶ − ߲ଶ߲߮ݔଶ − sin߮ = 0. (3)

However, a case of a chain with heterogeneous rotations of blocks taking into account the 
friction forces along their borders is more appropriate to the real geodynamic process [16]. It 
should be noted that the friction is regarded as the dissipation factor preventing the rotational 
interaction of the blocks. In this case, the rotational motions of crust blocks are described by the 
sine-Gordon equation with dissipation: ߮௧௧ − ܿଶ߮௫௫ + ௧߮ߤ − ߱଴ଶsin߮ = 0, (4)

where ߤ is a dissipation factor. For definiteness, we take ߤ > 0 (the positive ߤ has a physical 
meaning in relation to the Earth’s crust). 

3. Dispersion properties of sine-Gordon equation with attenuation 

In order to analyze dispersion properties of Eq. (4), first, we shall linearize it: 
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߮௧௧ − ܿଶ߮௫௫ + ௧߮ߤ − ߱଴ଶ߮ = 0. (5)

If to search a solution of Eq. (5) in the form of a traveling harmonic wave  ߮ሺݔ, ሻݐ = ߮଴exp൫݅ሺ߱ݐ − ሻ൯, one can find the following dispersion equation: −߱ଶݔ݇ + ߱ߤ݅ + ܿଶ݇ଶ − ߱଴ଶ = 0. (6)

From this equation, it follows that the wavenumber is complex: ݇ = ݇ଵ + ݅݇ଶ. (7)

The complex wavenumber means that the wave has a propagation constant and decays 
exponentially, i.e. displacement can be written as: ߮ሺݔ, ሻݐ = expሺ݇ଶݔሻcosሺ߱ݐ − ݇ଵݔሻ. 

Substituting Eq. (7) into the complex Eq. (6) and separating the real and imaginary parts, one 
can obtain a set of algebraic equations: −߱ଶ − ߱଴ଶ + ܿଶሺ݇ଵଶ − ݇ଶଶሻ = 0,   2ܿଶ݇ଵ݇ଶ + ߱ߤ = 0. (8)

From Eq. (8) it is possible to obtain the expressions for the real ݇ଵ and imaginary ݇ଶ parts of 
the wave number: 

݇ଵ = ∓ 1√2 ට−ሺ߱଴ଶܿ߱ߤ + ߱ଶሻ + √݉ = ∓ √22 ට߱ଶ + ߱଴ଶ + √݉ܿ , (9)

݇ଶ = ± √22 ට−ሺ߱ଶ + ߱଴ଶሻ + √݉ܿ = ± 1√2 ට߱ଶܿ߱ߤ + ߱଴ଶ + √݉, (10)

where, for brevity, the notation ݉ = ሺ߱ଶ + ߱଴ଶሻଶ +  ଶ߱ଶ is entered. Further investigations areߤ
carried out for couple: 

݇ଵ = √22 ට߱ଶ + ߱଴ଶ + √݉ܿ ,    ݇ଶ = − √22 ට−ሺ߱ଶ + ߱଴ଶሻ + √݉ܿ . 
From the analysis of Eqs. (9) and (10) (Fig. 1) it follows that high-frequency perturbations 

(߱ → +∞) propagate actually without dispersion (݇ଵ = ߱/ܿ), whereas the dissipation takes the 
constant value ݇ଶ =  ,which does not depend on the frequency. If there is no dissipation ,2ܿ/ߤ−
the imaginary part is absent too, whereas the real part of the dispersion curve has a cut-off of the 
wave number ݇ଵ = ߱଴/ܿ . The low-frequency perturbations possess a frequency-dependent 
dissipation and a dispersion. 

Fig. 1 shows that the curve of propagation, ݇ଵሺ߱ሻ, changes its convexity (concavity), when ߤ = 2√3߱଴ . If 0 < ߤ < 2√3߱଴ , the curve ݇ଵሺ߱ሻ  is concave for all the frequencies, and if  ߤ > 2√3߱଴, then the curve has some intervals of convexity. The attenuation curve ݇ଶ decreases 
and it is concave in the whole range of frequencies for all values of the dissipation factor. 
Dependences of attenuation factor ߙ = ூ௠ሺ௞ሻோ௘ሺ௞ሻ = ௞మ௞భ = ଵఓఠ ൫߱ଶ + ߱଴ଶ − √݉൯ on frequency are also 
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plotted in Fig. 1 for different values of dissipation factor ߤ. The attenuation factor decreases in the 
range of low frequencies and grows at higher frequencies. The graph has minimum points at  ߱ = ±߱଴ and changes its convexity. 

The density of the spectral frequency distribution, ߩሺ߱ሻ, is directly proportional to [22]: ݀݇ଵ݀߱ = √2߱൫2൫߱ଶ + ߱଴ଶ + √݉൯ + ଶ൯4ܿ√݉ට߱ଶߤ + ߱଴ଶ + √݉ . 
The function graph ߩሺ߱ሻ has a horizontal asymptote ߩ = 1/ܿ for ߱ → +∞ (Fig. 2). Fig. 2 

also shows that the low-frequency excitations exhibit dispersion only for ߤ > 2√3߱଴. When the 
dissipation factor grows up till 2√3߱଴ , function ߩሺ߱ሻ  becomes monotonically increasing 
throughout the interval and its graph varies within the curves shown in Fig. 2 (dotted and dash-dot 
lines). A sharp jump of the density of the spectral distribution is not observed. If ߤ  exceeds  2√3߱଴, function ߩሺ߱ሻ becomes non-monotonic, there appear a maximum in its graph near zero. 
For large values of the dissipation factor, a clear break of the curve ߩሺ߱ሻ is visible at the origin, 
i.e. the frequency spectrum becomes continuous for ߱ = 0. Thus, it is obviously that the low-
frequency perturbations have a dispersion, when ߤ > 2√3߱଴. The more is ߤ, the stronger is the 
dispersion at low frequencies. 

 
a) 

 
b) 

Fig. 1. Dependences of ݇ଵሺ߱ሻ, ݇ଶሺ߱ሻ, and ߙሺ߱ሻ for a) 0 < ߤ < 2√3߱଴ and b) for ߤ > 2√3߱଴ 

 
Fig. 2. Dependences ߩሺ߱ሻ for different values of 3߱√2 ,ߤ଴ < ଵߤ <  ଶߤ

For studying the energy transfer process as well as the wave field structure apart from the 
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excitation source, the propagating modes corresponding to the real areas of dispersion curves are 
of primary importance. The phase velocity ݒ௣௛ = ߱/݇ଵ is the most accessible for researching the 
characteristics of propagating modes. If to divide the first Eq. (9) by ߱  and to overturn the 
resulting fraction, it is possible to obtain an expression for the phase velocity: 

௣௛ݒ = ߤ2ܿ√ ට−ሺ߱଴ଶ + ߱ଶሻ + √݉. (11)

The group velocity is defined by equation ݒ௚௥ = ݀߱/݀݇ଵ. Deriving the expression for the real 
part of the wave number with respect to ߱ and overturning the received fraction, one can obtain 
an expression for the group velocity: 

௚௥ݒ = − 2√2ܿ√݉ට−ሺ߱ଶ + ߱଴ଶሻ + √݉൫߱ଶ − ߱଴ଶ − √݉൯߱ߤଶሺߤଶ + 4߱଴ଶሻ , (12)

where, as before, √݉ = ߱ଶඥሺ1 + ߱଴ଶ/߱ଶሻଶ +  .ଶ/߱ଶߤ
Dependences of the phase and group velocities for various values of the dissipation factor are 

shown in Fig. 3. Graph of functions Eqs. (11) and (12) have a common horizontal asymptote:  ݒ௣௛ = ௚௥ݒ = ܿ . For great values of ߤ  ( ߤ → +∞ ), the group velocity curve is close to  ݒ௚௥ = 2√2ܿඥ߱/ߤ. For all values of the dissipation factor ݒ௚௥ > ௣௛ݒ > 0, i.e. the dispersion is 
anomalous in the entire frequency range. 

 
a) 

 
b) 

Fig. 3. Dependences ݒ௣௛ሺ߱ሻ and ݒ௚௥ሺ߱ሻ for ߤଵ a) and ߤଶ b), ߤଵ <  ଶߤ

Thus, from the analysis of the dependence Eq. (12) it follows that for ߤ > 0 the linear waves 
propagate with velocities ݒ௣௛ < ܿ, i.e. the linear wave velocities are bounded above. 
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4. Stationary waves in a block geomedium 

Let us consider a solution of Eq. (4) in the form of stationary waves that propagate with a 
constant velocity and do not change their shape. In solutions of this type, the coordinate and time 
are included in combinations ߦ = ݔ − ݒ where ,ݐݒ =  is the nonlinear wave velocity. If to ݐݏ݊݋ܿ
make substitution ݑ = ߮ሺߦሻ in Eq. (4), it is possible to pass from the partial differential equation 
to the ordinary differential equation: ݑ′′ሺݒଶ − ܿଶሻ − ′ݑݒߤ = ߱଴ଶsin(13) ,ݑ

where the primes denote derivatives with respect to ߦ. 
Since the velocities of linear and nonlinear waves are different [23], one can conclude that the 

velocities of nonlinear waves are bounded below, i.e. ݒଶ > ܿଶ and Eq. (13) takes on the form: 

ᇱᇱݑ − ଶݒݒߤ − ܿଶ ᇱݑ = − ݑܹ݀݀ , (14)

where ܹሺݑሻ is the potential energy and ௗௐௗ௨ = − ఠబమ௩మି௖మ sinݑ. Eq. (14) represents an equation of a 
nonlinear oscillator with damping. The oscillator starts to move from the unstable equilibrium 
state, where the potential energy has the maximum value ܹ = 0. The potential energy of the 
oscillator has the minimum value ܹ = − 2߱଴ଶ ሺݒଶ − ܿଶሻ⁄  at a position that corresponds to a stable 
equilibrium state. The oscillator potential energy takes on the form: 

ܹሺݑሻ = ߱଴ଶݒଶ − ܿଶ ሺcosݑ − 1ሻ. (15)

Function (15) has extrema in points determined by the equation ܹ݀ ⁄ݑ݀ = ݑ :0 = ݇ ,݇ߨ ∈  .܈
The oscillator has two different equilibrium states: ݑଵ = ݇ ,݇ߨ2 ∈ ଶݑ and ܈ = ߨ + ݇ ,݇ߨ2 ∈  .܈
Let us investigate stability of the equilibrium states. 

1) We define small deviations from the equilibrium states ݑଶ = ߨ + ݇ߨ2  (݇ ∈ (܈ ݑ  : = ଶݑ + ෤ݑ = ߨ + ෤ݑ , where ݑ෤ → ±0. After substitution of these expressions into Eq. (14) we 
shall linearize the obtained equation: ݑᇱᇱݒݒߤଶ − ܿଶ. 

If to search a solution in the form ݑ෤ = expሺߦߣሻ, one can obtain a characteristic equation: 

ଶߣ − ଶݒݒߤ − ܿଶ ߣ + ߱଴ଶݒଶ − ܿଶ = 0. 
Its roots have the form: 

ଵ,ଶߣ = 12 ଶݒ1 − ܿଶ ቆݒߤ ± ටሺݒߤሻଶ − 4߱଴ଶሺݒଶ − ܿଶሻቇ. 
If ሺݒߤሻଶ > 4߱଴ଶሺݒଶ − ܿଶሻ, then the roots ߣଵ and ߣଶ are real and of the same sign (positive), 

hence, the equilibrium state ݑଶ = ߨ + ,݇ߨ2  ݇ ∈ ܈  is an unstable node (Fig. 4). When  ሺݒߤሻଶ < 4߱଴ଶሺݒଶ − ܿଶሻ, the roots are complex with a positive real part, therefore, the considered 
equilibrium state is an unstable focus (Fig. 5). 

2) Let us now consider the equilibrium states ݑଵ = ݇) ݇ߨ2 ∈ ݑ If to put .(܈ = ଵݑ + ෤ݑ = ෤ݑ , 
where ݑ෤ → ±0, then linearization of Eq. (6) yields the following equation: 
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෤ᇱᇱݑ − ଶݒݒߤ − ܿଶ ෤ᇱݑ − ߱଴ଶݒଶ − ܿଶ = ෤ݑ 0. 
After substitution of ݑ෤ = expሺߦߣሻ  one can receive a characteristic equation with the 

corresponding roots: 

ଶߣ − ଶݒݒߤ − ܿଶ ߣ − ߱଴ଶݒଶ − ܿଶ = ଵ,ଶߣ   ,0 = 12 ଶݒ1 − ܿଶ ቆݒߤ ± ටሺݒߤሻଶ + 4߱଴ଶሺݒଶ − ܿଶሻቇ. 
Since ݒଶ > ܿଶ, roots ߣଵ and ߣଶ are real and of opposite signs. Hence, the equilibrium state ݑଵ = ݇ ,݇ߨ2 ∈  .is a saddle (Figs. 4, 5) ܈

 
Fig. 4. Phase portrait for ሺ2߱଴ ⁄ߤ ሻଶሺ1 − ሺܿ ⁄ݒ ሻଶሻ < 1 

The oscillator starts to move from the unstable equilibrium state ݑଶ (node, focus) at ߦ → −∞ 
and approaches to the saddle point ݑଵ at ߦ → +∞ (Figs. 4, 5). 

 
Fig. 5. Phase portrait for ሺ2߱଴ ⁄ߤ ሻଶሺ1 − ሺܿ ⁄ݒ ሻଶሻ > 1, separatrix for ߤ = 0 

Solutions of Eq. (13) are shock waves. If ሺݒߤሻଶ > 4߱଴ଶሺݒଶ − ܿଶሻ, the solution is a stationary 
shock wave [23] of small amplitude (Fig. 3, a dotted line). It has the form of a monotonic 
difference between two constant values ݑଵ = 0 and ݑଶ = ሻଶݒߤWhen ሺ .ߨ < 4߱଴ଶሺݒଶ − ܿଶሻ, the 
solution is a stationary shock wave with an oscillating leading edge (Fig. 6, a firm line). At the 
trailing edge, the solution has the form of exponentially growing harmonic oscillations. 

The profile of the stationary shock wave is shown in Fig. 7 for different values of the 
dissipation factor ߤ. From this Fig. 7 it is visible that growing of the dissipation factor ߤ leads to 
increasing of the length of wave difference ߜ. Increasing of the nonlinear wave velocity ݒ also 
contributes to growing of the length of wave difference. However, increasing of the nonlinearity 
degree of Eq. (13) leads to growing of the steepness of the shock wave front, i.e. to decreasing of 
the length of wave difference. The characteristic length of the difference ߜ~ ݒߤ ߱଴ଶ⁄  is directly 
proportional to the wave velocity and attenuation. But increasing of the nonlinear effects leads, 
vice-versa, to decreasing of ߜ. 
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Fig. 6. The profile of the stationary shock wave ሺ2߱଴ ⁄ߤ ሻଶሺ1 − ሺܿ ⁄ݒ ሻଶሻ < 1 (curve 1),  ሺ2߱଴ ⁄ߤ ሻଶሺ1 − ሺܿ ⁄ݒ ሻଶሻ > 1 (curve 2) 

 
Fig. 7. The profile of the stationary shock wave for various values  

of the dissipation factor ߤ ,ߤଵ < ଶߤ <  ଷߤ

5. Conclusions 

In this paper, it is assumed that the rotational movement of crust blocks and the corresponding 
rotational waves characterizing redistribution of tectonic stresses are described by the sine-Gordon 
equation [16, 21]. However, a case of a chain with heterogeneous rotations of blocks taking into 
account the friction forces along their borders is more appropriate to the real geodynamic process. 
In this case, the friction is considered as a dissipation factor, which, on account of frictional forces 
between blocks of a geomedium, prevents their rotational interaction [16]. As a result, the 
movement of a chain of crust blocks is described by the modified sine-Gordon equation containing 
a dissipative term. The dispersion properties of this equation have been analyzed. The presence of 
anomalous dispersion has been revealed for all values of the dissipation factor. It is shown that 
the dispersion is manifested in the low-frequency range at high values of the dissipation factor, 
and the greater is the dissipation factor, the larger is the dispersion at low frequencies. The features 
of propagation of the stationary shock (seismic) wave in a geomedium with account of dissipation 
have been investigated. It has been found that the shock wave front width is directly proportional 
to the nonlinear wave velocity and to the dissipation factor of the medium, but it is inversely 
proportional to the nonlinearity coefficient. The obtained research results can be used for the study 
of geodynamic processes in various fields of the Earth and for improvement of earthquake 
forecasting methods. 
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