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Abstract. This paper presents a strategy for computational modelling of elastic rubber couplings 
under dynamic loading. Methods how to determine static and dynamic characteristics of the elastic 
coupling based on static and dynamic experimental tests of rubber elements are presented. The 
nonlinear deformation behaviour, frequency and temperature dependent properties of rubber are 
considered for computational models. The model is applied to the elastic coupling connecting an 
in-line six-cylinder natural gas engine and an electrical generator. Loading forces are based on 
in-cylinder pressure measurement. Experimental verification of the computational model results 
is carried out by measuring the values on a test engine using the non-contact laser measuring 
technique. 
Keywords: coupling, torsional vibrations, elastic, rubber. 

1. Introduction 

Modern powertrains that are based on internal combustion engines (ICE), are developed as 
highly efficient systems which transfer primary energy source, like diesel or compressed natural 
gas, to output energy like vehicle kinetic energy, electricity or heat. Powertrains often contain 
elastic components to reduce vibrations. Such components are often made of rubber – e.g. rubber 
torsional dampers, rubber couplings or engine mounts. These components are often highly 
thermally, mechanically and chemically stressed and require special procedures when designing 
them. 

In general, rubber materials are used to reduce vibrations of machines. However, to correctly 
predict the vibration response of a machine, the dynamic properties of rubber components, such 
as the Young’s modulus or the damping factor, have to be accurately identified.  

Many authors present computational and experimental approaches of how to model rubber 
components. Some of them have carried out an experimental research by directly measuring the 
Young’s modulus and the damping factor. Sim et al. [1], for example, developed a technique to 
calculate the rubber material properties of viscoelastic materials with finite element method 
(FEM). They derived the Young’s modulus, the damping factor and the Poisson’s ratio from two 
different rubbers with various shape factors. Koblar et al. [2] presented a similar method for 
describing the dynamic behaviour of rubber components. Lin et al. [3] developed a method to 
evaluate the frequency-dependent stiffness and damping properties of rubber mounts by using the 
measured response function from the impact test. Rubber dynamic behaviour is also discussed in 
detail by Sjöberg [4] and Olsson [5]. 

Vibrational problems of powertrains are commonly solved by using a wide range of 
experimental or computational approaches. Experimental methods are often very expensive; and 
therefore, rapid developments of modern computational methods with highly specialized 
computational models are in demand.  

Present state-of-the-art in powertrain vibration simulations consists of computational models 
solved in time domain using Multibody systems (MBS) with high share of flexible bodies, often 
based on FEM principles. Some powertrain components, e.g. flywheels or pulleys, are included 
only as an additional mass, or frequently, they are not included at all. Crankshaft and engine block 
interactions are often solved by using a hydrodynamic, or more advanced elastohydrodynamic 
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model of a slide bearing. However, full elastohydrodynamic solution of Reynolds equation, 
including shell and pin deformations, is still not fully adopted for powertrain dynamics with many 
slide bearings. Examples of computational approaches verified by measurement are presented in 
Novotny [6, 7] or Offner [8]. 

2. Objectives of the computational modelling  

The main objective is to develop a complex methodology to predict the dynamic properties of 
elastic couplings based on a component testing of rubber elements. The resulting computational 
tool has to have following properties: 

• Non-linear deformation, frequency and temperature dependent behavior of rubber elements. 
• Ability to assemble the elastic couplings into large powertrain models. 
• Inputs based on results of static and dynamic component tests of the rubber element. 

3. Modelling of properties of elastic coupling 

3.1. Experimental determination of static properties of rubber element  

To determine the characteristics of the entire coupling in a given configuration requires 
analysis of static properties of a single rubber element in dependence on deformation, temperature 
and frequency. The design of the current coupling includes eight individual rubber elements 
embedded into the steel disc, see Fig. 1. These elements allow the formation of various 
configurations of couplings with defined properties. 

 
Fig. 1. Elastic coupling connecting engine and electric generator 

The nonlinear behavior of the rubber elements of the coupling has to be included in the model. 
Rubber element nonlinearities, due to amplitude dependence, are discussed by Harris and 
Stevenson [9]. These impacts can be caused by the geometrical design of the rubber component, 
as well as, by the intrinsic material behavior. The references present nonlinear stress of the 
material – strain relations for finite strain ranging approximately from 20 to 500 %. Components 
also show nonlinear properties for small to intermediate amplitudes – ranging approximately up 
to 5 % of component strain due to the material behavior. 

Rubber element properties are analyzed separately by technical experiments and 
computational models. Subsequently, the whole coupling properties are derived. Static 
deformation properties of rubber element assume the following: 

• Deformation in the radial direction (corresponding to the load of the element perpendicular 
to the axis of the element). 

• Deformation in the axial direction (corresponding to the load of the element in the axis of the 
element). 

• Angular deformation perpendicular to the axis of the element (corresponding to the moment 
perpendicular to the axis of the element). 

A determination of these components is carried out employing experimental procedure for 
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computational model calibrations and using computational procedure for radial, axial and angular 
directions. The results of the radial loading are based on basic technical experiments which are 
used to tune computational finite element (FE) model properties. 

The static characteristics of the rubber element are determined by using the universal testing 
machine, see Fig. 2. 

The radial loading characteristics of the rubber element is presented in Fig. 3. It shows three 
repetitions of loading, the first cycle is slightly different due to element positioning, therefore this 
case is not assessed. 

 
Fig. 2. Arrangement of a technical experiment to determine the static characteristics of the rubber element 

 
Fig. 3. Measured force vs. radial deformation 

3.2. Computational determination of static properties of rubber element 

It is not possible to measure all the necessary elastic properties of a rubber element. However, 
there is a way how to obtain all the properties to use computational determinations of static 
properties of rubber elements based on the selected experimental results. The experimental results 
are used to tune the computational model of the rubber element. The computational model is 
solved by entering the displacement in a given direction and by evaluation of the overall force 
required for implementation of the displacement.  

The computational determination of the deformation properties of the rubber element is 
performed using the finite element method (FEM). Mooney-Rivlin’s two-parameter hyperelastic 
model is used as rubber material model. The Mooney-Rivlin’s parameters taken from measured 
results presented in Fig. 3. The resultant material constants characterizing the deformation of the 
deviatoric stress are ܿଵ଴ = 1.11 and ܿ଴ଵ = 0.27 and incompressibility parameter is ݀ = 0.018. 

The calculation results, including the introduction of the FE model, are presented in Fig. 4. 
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Fig. 4. Calculated radial, axial and bending stiffness of single rubber element  

and FE mesh of computational model 

Nonlinear deformation behavior of the rubber element is considered only in the radial direction 
and it can be approximated as: 

(ோݔ)௫ߙ = ܿோ(ݔோ)ܿோ଴ ≐ 0.0152 ⋅ ோଶݔ + 0.0033 ⋅ 	ோݔ + 1,	 (1)

where ܿோ is radial stiffness for current radial loading, ܿோ଴ is radial stiffness for no loaded state and ݔோ radial deformation of the rubber element center under current loading. Current radial stiffness 
can be evaluated as: 

ܿோ(ݔோ) = 	,ோݔோ߲ܨ߲ (2)

where ܨோ is a current radial force. 
Axial stiffness ஺ܿ and bending stiffness ܿ௕ of the rubber element are considered as constant 

with respect to the values of the axial forces or bending moments. The nonlinear deformation 
behavior is not presumed. 

3.3. Experimental determination of dynamic characteristics of rubber element 

Material components made of rubber present a significant dependence on the loading 
frequency. These frequency dependent properties are determined experimentally by a vibration 
exciter device. The assembly of the technical experiment to determine the dynamic characteristics 
of rubber element, is presented in Fig. 5. 

The technical experiment is carried out in above-resonance area of the system consisting of 
the rubber element and a weight. The following parameters are evaluated: 

radial dynamic stiffness ܿோ of rubber element and relative damping ߦ of rubber. 
The description of the experimental arrangement used for measurement can be simplified to a 

system with one degree of freedom. Therefore, the equation of the motion, of a system presuming 
only harmonic loading, is: 
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ሷଶݔ݉ + ܾோݔሶଶ + ܿோݔଶ = (ܾ݅߱ோ + ܿோ)ݔଵ݁௜ఠ௧,	 (3)

where ݔଵis a defined time dependent displacement of the vibration excitation, ݔଶ is a response of 
weight mass ݉, ܾோ is radial viscous damping coefficient of a rubber element, ܿோ is radial stiffness 
of a rubber element, ߱ is angular velocity and ݐ is time. 

 
Fig. 5. Arrangement of technical experiment to determine the dynamic characteristics of the rubber element 

The system can be solved by introducing complex variables. Then the complex dynamic 
stiffness of the rubber element is defined as: ܿ̅ = ݉߱ଶ ଶݔଶ̅ݔ̅ − 	.ଵݔ̅ (4)

The quantities with vinculum are complex; therefore, the rubber element radial stiffness can 
be calculated as:  ܿோ = real(ܿ̅).	 (5)

And radial damping coefficient of the rubber element is: ܾோ = 1߱ imag(ܿ̅).	 (6)

Relative damping is believed to be independent of the excitation frequency: 

ߦ = ܾ߱ோܿோ .	 (7)

Measuring and evaluating the radial stiffness and the relative damping is performed with the 
excitation frequency ranging from 50 Hz to 300 Hz and for temperatures from 25 °C to 55 °C. 
The measured stiffness dependent on excitation frequency, is expressed in the form of frequency 
correction coefficients. These correction coefficients are defined as: 

(݂)௙ߙ = ܿோ(݂)ܿோ଴ (݂)௙కߙ				, = ଴ߦ(݂)ߦ ,	 (8)

where ߙ௙  is a frequency correction coefficient for stiffness and ߙ௙క  is a frequency correction 
coefficient for relative damping. The measured frequency correction coefficient for stiffness is 
presented in Fig. 6. 

The measured frequency correction coefficient for stiffness can be approximated by second 
order polynomial as: 
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(݂)௙ߙ ≐ −0.000023݂ଶ + 0.01519݂ + 1.	 (9)

And measured frequency correction coefficient for relative damping is a constant equal to 1. 
The influence of temperature can be expressed by temperature correction coefficient for 

stiffness ்ߙ௖  and relative damping ்ߙక.  The measured values of temperature correction 
coefficients are presented in Fig. 7. 

The values of the temperature correction coefficients for stiffness and relative damping can be 
expressed by second order polynomial as: 

(ܶ)௖்ߙ = ܿோ(ܶ)ܿோ଴ ≐ 0.000187ܶଶ − 0.02565ܶ + 1.530.	 (ܶ)క்ߙ(10) = ଴ߦ(ܶ)ߦ ≐ 0.000063ܶଶ − 0.01275ܶ + 1.281.	 (11)

 

 
Fig. 6. Measured frequency correction  

coefficient for stiffness 

 
Fig. 7. Measured temperature correction  

coefficient for stiffness and relative damping 

3.4. Determination of dynamic nonlinear characteristics of elastic coupling 

The resultant static torsional stiffness of the whole elastic coupling can be calculated  
as follows: 

்ܿ௦௧௔௧ = ܿோ ൬2ܦ൰ଶ ݊ଵ ቀ݊ଵ݊ቁ,	 (12)

where ܦ is a pitch diameter of rubber elements, ݊ଵ is a number of rubber elements on one side 
and ݊ is a total number of rubber elements. 

The resulting dependency of coupling dynamic stiffness on the loading frequency and element 
temperature can be written as: ்ܿ = ்ܿ௦௧௔௧ߙ௫ߙ௙்ߙ௖,	 (13)

where ்ܿ௦௧௔௧ is static coupling stiffness at temperature of 25 °C and under static load. Relation of 
viscous damping coefficient ்ܾ, relative damping ்ߦ and frequency ߱ is:  

்ܾ = ଴߱ߦ்ܿ .	 (14)

Relative damping dependent on temperature can be expressed as: ்ߦ = 	,క்ߙ଴ߦ (15)
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where ߦ଴ is relative damping at temperature of 25 °C. It is supposed that the dependence of relative 
damping on the loading frequency is minimal; and therefore, the frequency dependence is not 
included in the relative damping Eq. (15). 

The coupling model is extended by coupling flexibility for load in axial direction and for 
bending moments. These properties are considered as independent of the deformation. The 
bending stiffness of the whole coupling can be approximated as: 

ܿ஻ = ቆܿ௕ + 0,5ܿ௔ ଶ8ܦ ቇ݊ଵ ቀ݊ଵ݊ቁ 	.௖்ߙ௙ߙ (16)

And coupling bending damping reads: 

ܾ஻ = ቆܿ௕ + 0,5ܿ௔ ଶ8ܦ ቇ݊ଵ ቀ݊ଵ݊ቁ ଴߱ߦ 	.క்ߙ௙ߙ (17)

Similarly, the axial stiffness of the whole coupling is defined as: 

஺ܿ = ܿ௔݊ଵ ቀ݊ଵ݊ቁ 	.௖்ߙ௙ߙ (18)

And the axial damping can be calculated as:  

஺ܾ = ܿ௔݊ଵ ቀ݊ଵ݊ቁ ݒ଴ߦ 	,క்ߙ௙ߙ (19)

where ݒ is axial deformation velocity. 

4. Application of elastic coupling on connection of engine and generator 

The developed approach is a general procedure used for modelling rubber components of 
powertrains, such as couplings, dampers or engine mounts. The modelling abilities and 
verification of computational results are presented on the elastic coupling connecting ICE and 
electric generator. The target engine is a turbocharged six-cylinder engine using compressed 
natural gas (CNG) as fuel. The main engine parameters are: engine displacement of 11.9 liters and 
peak power output of 250 kW at engine speed of 1 800 rpm. Idling speed of the engine is 800 rpm. 

There are two operational modes of this engine: 
• Operating mode considering full engine load for engine speed ݊ = 1000-2000 rpm. 
• Starting mode considering restricted engine load for engine speed ݊ = 400-1000 rpm. 
Engine speeds below the engine idling speed of the engine do not occur in engine operation, 

but they are presented to demonstrate the properties of the elastic coupling. 
The model for a solution of ICE and electric generator system vibrations, is based on multibody 

system and comprises of two subsystems: 
• Virtual crank train including all the significant components of crank train. 
• Computational model of elastic coupling including deformation, frequency and temperature 

dependencies. 
The model is assembled, as well as, numerically solved in multibody system ADAMS. 

ADAMS is a general code and enables the integration of user-defined models directly using 
ADAMS commands or using user written FORTRAN or C++ subroutines. ADAMS C++ solver 
of version 15 is used for numerical calculation of the results. 

4.1. Implementation of computational models 

The computational model is solved in time domain for steady state conditions. Model of crank 
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train and generator system, including the elastic coupling assembled in multibody system, is 
shown in Fig. 8. Full description of crank train computational models are presented in  
Novotny [6]. 

The computational model of the elastic coupling comprises of two bodies (discs) connected by 
nonlinear general forces enabling flexibility for torsional, bending and axial loading. The two 
coupling bodies are constrained by primitive joint enabling one axial translational movement and 
three rotational movements. The computational model of crank train is excited by gas forces in 
combustion chambers considering operational states of the ICE. 

The computations of the engine-generator system are done for steady states starting from 
engine speed 400 rpm to engine speed 2000 rpm with step of 100 rpm. 

The computed results presented in Fig. 9 show torsional resonance of the 3rd order near the 
engine speed ݊ = 520 rpm, this engine speed is highly critical; however, the resonance occurs 
below engine operating speed range. 

Operating speeds show no torsional resonances of the engine-generator system. In general, a 
lack of resonances near the operating engine speeds is critical in terms of the coupling design. 

 
Fig. 8. Model of crank train and generator system 

including elastic coupling assembled  
in multibody system 

 
Fig. 9. Computed torsional moments in the elastic 

coupling for engine speeds including starting  
and operational engine modes 

4.2. Experimental verification of computational models  

Technical experiments (see Fig. 10) are proposed to verify the final design of the elastic 
coupling, as well as, to validate computational models. The verification of the coupling design is 
performed in the engine operating speed range under full engine load conditions. Resonant speed 
of the engine-generator system cannot be directly verified because in such low speeds, below 
idling speed, the engine does not operate. 

 
Fig. 10. Measurement of crankshaft pulley  

angular vibrations 
 

 
Fig. 11. Dominant harmonic orders vs. engine speed 

for computed (“Comp.”) and measured (“Exp.”) 
angular displacements 
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Dominant harmonic orders vs. engine speed for computed and measured angular 
displacements of flywheel pulley are presented in Fig. 11. The 3rd harmonic order is closely 
connected with vibration of ICE and the electric generator system. The coupling is always 
designed to avoid resonances in operational engine speeds. 

5. Conclusions 

The proposed methodology uses a combination of various experimental and computational 
approaches to determine the rubber coupling parameters based on simple component tests 
involving the determination of load, temperature and frequency properties of the rubber 
component. 

Using this methodology, it is possible to avoid problems with high thermomechanical loads of 
coupling components at the design phase. Moreover, the methodology based on testing the 
component of the clutch enables the configuration parameters of different connectors and thus to 
effectively build a coupling for lower or higher loads. 

Methodology and the elastic coupling is also verified in the case of the connection of the ICE 
and generator in real environment. The torsional resonance of the 3rd order is distant from the 
operating speed range and the coupling design is confirmed, as well as, computational models of 
the coupling. Measurement results of torsional vibrations confirmed the accuracy of the 
methodology used for that purpose. 

However, there are some problematic areas that cannot be described with high accuracy. These 
include inconsiderable variability in the properties of rubber or external conditions during 
operations of the engine-generator system.  
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