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Abstract. The drum shearer is one of the main equipments of the long-wall mining system. A 
typical condition to adjust the hauling and drum speeds is when the drum load exceeds the 
allowable value due to the hardness increase of the coal seam. Two schemes are utilized in this 
condition herein: (1) increasing the drum speed directly and maintaining the hauling speed; 
(2) decreasing the hauling speed firstly, then increasing the drum speed, finally increasing the 
hauling speed to the original value. The electromechanical dynamic model is firstly constructed 
for the Cutting Transmission System, and then the electromechanical dynamic analysis is 
conducted with both schemes, discovering that: the first scheme is quicker but may bring 
instability; the second is stable but slower; the resonance in frequencies obtained in different 
meshing conditions can be excited at the same time. At last, some advices are given for the 
development of the speed control strategies and mechanical design of the unmanned long-wall 
shearer. 
Keywords: unmanned long-wall shearer, cutting transmission system, electromechanical 
dynamic analysis, variable speed process. 

1. Introduction 

Long-wall mining has been the dominant coal mining method for decades [1] and the drum 
long-wall shearer as shown in Fig. 1(a) is one of the main equipment’s of the Long-wall mining 
system. The cutting transmission system of the long-wall shearer is composed of the motor, the 
gear transmission system, and the drum (cutting head) as shown in Fig. 1(b). The power source of 
the cutting transmission system is usually the triple-phase asynchronous induction motor without 
control at present, that is, the rotating speed of the drum cannot be adjusted as expected. The 
hauling speed is usually reduced when the drum load exceeds the allowable value, as a result in 
decrease of coal production for the mining systems. To overcome this difficulty, the drum rotating 
speed is designed to be adjustable and the direct torque control (DTC) induction motor is chosen 
as the power source of the drum driving system for the unmanned long-wall shearer. 

 
a) Drum driving system 

 
b) Long-wall shearer 

Fig. 1. Appearance 

The cutting transmission chain is so long with several parallel-axis gears and a stage of 
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planetary gear set, moreover, the drum load is heavy with strong impact and large fluctuation, so 
the cutting transmission system is a weak part of the shearer. For the unmanned shearer, the drum 
rotating speed and hauling speed should be adjusted jointly when the drum load increases or due 
to requirements of the mining process. More attention should be paid to the variable speed process 
that can affect the reliability and dynamic performance of the cutting transmission system of the 
unmanned long-wall shearer. Therefore, it is essential to conduct an electromechanical dynamic 
analysis for the cutting transmission system of the unmanned long-wall shearer to investigate the 
dynamic characteristics and electrical characteristics under the variable speed process, which can 
provide some guidance to make optimal speed control strategy and improve the reliability and 
dynamic performance of the cutting transmission system of the unmanned long-wall shearer. 

The rotating speed of the cutting transmission system is variable for the unmanned long-wall 
shearer, and the generalized coordinate of the rotor in the electric motor model is usually angular 
displacement, so a dynamic model of variable speed process is needed for the gear transmission 
system and the generalized coordinates in the dynamic model should be angular displacements to 
connect the dynamic model to the electric motor model conveniently. The planetary gear set is 
one of the key parts of the gear transmission system because it is at the low-speed stage under 
heavy load and experience more probability of damage. Many dynamic models for planetary gear 
sets have been proposed in the literature [2-5]. These models [2-5] are proposed to mainly 
investigate the vibration properties of gear transmission systems and the vibratory translational 
and angular displacements [2, 4] are usually chosen as general coordinates. Therefore, these 
models [2-5] just can be used in vibration analysis of transmission systems at a stable mean angular 
velocity with small fluctuation, not for variable speed processes. A translational-torsional dynamic 
model of variable speed process was proposed for the herringbone planetary gear set in the 
reference [6]. In this dynamic model, the translational and angular displacements are chosen as 
the generalized coordinates, moreover, the meshing stiffness and profile error excitation are 
variable with the angular displacements of the herringbone planetary gear set. In this study, a 
torsional dynamic model of variable speed process for the spur planetary gear set [7] is utilized 
that is simplified from the model in [6]. In the dynamic model of the planetary gear set [7], the 
angular displacements chosen as the generalized coordinates, so it is convenient to be connected 
to the electric motor model to construct the electromechanical dynamic model. 

Some investigations have been conducted for the electromechanical dynamic analysis of the 
motor-gear system in previous literature [8-15]. The steady-state model of electric motor is 
utilized in [8, 9, 12, 14], while in [10, 11, 13] the dynamic model of the motor is utilized. These 
studies [8-13] mostly focus on the parallel-axis gear pairs except the literature [14, 15]. In these 
investigations [8-15], only the literature [14, 15] focuses on the variable speed process. However, 
the dynamic model of the planetary gear set in [14, 15] is constructed based on the models in 
[3, 16, 17] by modifying the meshing stiffness according to the mean angular velocity. The 
variation of the mean rotating speed of gear transmission must be determined in advance, while, 
most of time, the rotating speed is usually unknown before the electromechanical dynamic model 
is simulated.  

The cutting speed and hauling speeds usually need to be adjusted in two conditions: (1) when 
the mining process requires; (2) when the drum load exceeds the allowable value. Usually, the 
second condition may bring more damage to the shearer, so more attentions should be paid to it. 
The drum load can be reduced by adjusting the cutting speed or hauling speed, for example, 
increasing the drum rotating speed or decreasing the hauling speed, based on the calculation 
formula of the pick cutting force [18]. The calculation of the drum load will be depicted in 
Section 5. Two speed adjusting schemes are utilized herein: (1) increasing the drum speed directly 
and maintaining the hauling speed; (2) decreasing the hauling speed firstly, then increasing the 
drum speed, finally increasing the hauling speed to the original value.  

In this study, the DTC induction motor is chosen as the power source of the cutting 
transmission system. The induction motor is controlled as shown in [19]. An electromechanical 
dynamic model for the drum driving system is constructed including the DTC induction motor, 
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the gear transmission system, and the drum. The calculation of the drum load is depicted in detail, 
and then, based on it, two kinds of speed adjusting schemes are proposed. Next, the 
electromechanical dynamic characteristics of the drum driving system are simulated under these 
two variable speed processes. The advantages and disadvantages of this two speed adjusting 
schemes are discussed in detail base on the simulation. At last, some advices are given to develop 
the speed control system for the unmanned long-wall shearer. 

2. Electromechanical dynamic model of the drum driving system 

The drum driving system is composed of the DTC induction motor, the gear transmission 
system, and the drum (cutting head) as shown in Fig. 1(b). In this paper, an electromechanical 
dynamic model of the drum driving system is constructed including the electric motor, the gear 
transmission system, and the drum as shown in Fig. 2. The gear transmission system is a long 
chain with a series of parallel-axis gears and a stage of planetary gear set. To simplify the 
electromechanical dynamic model, the rotary inertias of the parallel-axis gear pairs and electric 
motor are equivalent to the motor rotor axis (ܬ௠௣௘). ݇௠௣௘ and ܿ௠௣௘ denote the torsional stiffness 
and damping of the coupling between the electric motor and the gear transmission respectively; ܬௗ are the rotary inertia of the drum; ܯ௠ and ܯௗ are the torques acting on the electric motor rotor 
and drum respectively; ߠ௠ and ߠௗ are the angular displacements of the electric motor rotor and 
drum respectively; ܿ௣ௗ , and ݇௣ௗ  are the damping and stiffness of the connection between the 
carrier of the planetary gear set and drum; imp is the transmission ratio of the parallel-axis gear 
pairs. The angular displacements of the sun ߠ௦ is measured in the moving coordinate system, so 
the angular displacements of the sun in the static coordinate frame is ߠ௦ +   .௖ as shown in Fig. 2ߠ

 
Fig. 2. Electromechanical dynamic model of the drum driving system 

The electromechanical dynamic model is constructed as shown in Fig. 3, including three main 
parts: the DTC induction motor, the mechanical part (the gear transmission system and the drum), 
and the drum load model. The DTC induction motor is depicted in detail in reference [19]. The 
dynamic model of the mechanical part including the planetary gear set and drum will be depicted 
in detail following. 

 
Fig. 3. Block diagram of the electromechanical dynamic model of the drum driving system 

A torsional dynamic model of variable speed process for the spur planetary gear set [7] is 
utilized in this study, which is simplified from the translational-torsional dynamic model of 
variable speed process for the herringbone planetary gear set in [6]. The angular displacement is 

m m
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chosen as the generalized coordinates in this model, so this model is convenient to be connected 
to the electric motor model for electromechanical dynamic analysis. In Fig. 4, three kinds of 
coordinate systems are constructed: (1) the static coordinate system ܱܻܺ ; (2) the moving 
coordinate system ݕݔ݋  rotating with carrier; (3) the moving coordinate system on  ߦ௡ߟ௡ (݊ = 1,…, ܰ and ܰ is the number of planet) rotating with the carrier, where ߦ௡-axis is in the 
radial direction and ߟ௡-axis is in the tangential direction. Angular displacements ߠ௜ (݅ =  are (ݎ ,ݏ
assigned to the sun and ring respectively, which are measured in the moving coordinate system ߠ .ݕݔ݋௖ is the angular displacement of the carrier which is measured in the static system ܱܻܺ. ߠ௣௡ 
is the angular displacement of the ݊th planet which is measured in the moving coordinate system ߦ݋௡ߟ௡ ௦ߠ] . ௥ߠ , ௖ߠ , ௣ଵߠ , ௣ேߠ ,…, ] are chosen as the generalized coordinates to construct the 
dynamic model of the planetary gear set. ߮௡ is the position angle of the theoretical center of ݊th 
planet, where ߮௡ = ݊)ߨ2 − 1)/ܰ. ݇ఏ௥ is the torsional supporting stiffness of the ring which is 
provided by gearbox house because the ring is usually fixed on the gearbox house. ௦ܶ and ௖ܶ is the 
torque acting on the sun and carrier. ௥ܶ is the torque acting on the ring gear which is provided by 
the gearbox house, where ௥ܶ = −݇ఏ௥(ߠ௥ +  .(௖ߠ

 
Fig. 4. Dynamic model of the planetary gear set 

The planetary gear set is firstly transformed into parallel-axis external and internal gear pairs 
in the moving coordinate system to obtain the meshing forces, and then the Newton’s law in 
non-inertial coordinate system [3] is utilized to obtain the equations of motion of the spur planetary 
gear set as shown in Eq. (1): 

ەۖۖۖ
۔ۖۖ
ሷ௦ߠ௦൫ܬۓۖۖۖ + ሷ௖൯ߠ = ௦ܶ + ෍ ௕௦ேݎா௬௡ܨ

௡ୀଵ ,
ሷ௥ߠ௥൫ܬ + ሷ௖൯ߠ = ෍ ௕௥ேݎூ௬௡ܨ

௡ୀଵ − ݇ఏ௥(ߠ௥ + ,(௖ߠ
௖ܬ) + ܰ݉௣(ݎ௖)ଶ)ߠሷ௖ = − ෍(ܨா௬௡ܿߙݏ݋௦ + ௖ேݎ(௥ߙݏ݋ூ௬௡ܿܨ

௝ୀଵ + ௖ܶ,ܬ௣௡ߠሷ௣௡ = ௕௣௡ݎா௬௡ܨ − .௕௣௡ݎூ௬௡ܨ
 (1)

In Eq. (1), ݎ௖ is the planet distribution radius. ܨ஺௬௡ (ܣ =  direction respectively. The-ݕ spur gear pair in (ܫ) and internal (ܧ) denotes the meshing force of the ݊th transformed external (ܫ ,ܧ
calculation of ܨ஺௬௡ is depicted detailedly in [6] for the herringbone planetary gear set, while for 
the spur planetary gear set, the ܨ஺௬௡ is calculated by set the helix angle to be zero.  

n

pn

c

r

s

c

sT

cT

rT



2526. ELECTROMECHANICAL DYNAMIC ANALYSIS FOR THE CUTTING TRANSMISSION SYSTEM OF THE UNMANNED LONG-WALL SHEARER UNDER 
VARIABLE SPEED PROCESS. CHANGZHAO LIU, DATONG QIN, YINGHUA LIAO 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. AUG 2017, VOL. 19, ISSUE 5. ISSN 1392-8716 3195 

The torque acting on the sun ( ௦ܶ) and carrier ( ௖ܶ) are calculated as Eqs. (2) and (3). The 
differential equation of the drum is derived as Eq. (4). Eqs. (2-4) and Eq. (1) are combined to 
construct the dynamic model of the mechanical part including the gear transmission system and 
drum. The torque acted on the motor ( ௠ܶ) by the mechanical part is calculated by Eq. (5): 

௦ܶ = ൛ܿ௠௣௘ൣߠሶ௠ − ሶ௦ߠ) + ௠ߠሶ௖)݅௠௣൧+݇௠௣௘ൣߠ − ௦ߠ) + ௖)݅௠௣൧ൟ݅௠௣, (2)௖ܶߠ = −ܿ௣ௗ൫ߠሶ௖ − ሶௗ൯ߠ − ݇௣ௗ൫ߠሶ௖ − ሷௗߠௗܬௗ൯, (3)ߠ − ܿ௣ௗ൫ߠሶ௖ − ሶௗ൯ߠ − ݇௣ௗ(ߠ௖ − (ௗߠ = ௗ, (4)௠ܶܯ− = ܿ௠௣௘ൣߠሶ௠ − ሶ௦ߠ) + ሶ௖)݅௠௣൧ߠ + ݇௠௣௘ൣߠ௠ − ௦ߠ) + ௖)݅௠௣൧. (5)ߠ

The differential equations of the mechanical part (including the gear transmission system and 
the drum) are made into s-function and connected to the DTC induction motor to construct the 
electromechanical dynamic model of the drum driving system as shown in Fig. 3. The drum load 
model will be depicted in next section 

3. Calculation of the mean drum load 

Usually, the drum load can be simulated by summing the mean drum load and random 
fluctuation, what is more, the random fluctuation is positively correlated with the mean drum load. 
To simplify the calculation, the mean load is used to reflect the trend of the realistic drum load. 
This simplification can be found in a lot of literature [20-23], in which the cutting forces are 
usually the mean cutting force.  

3.1. Calculation of the mean cutting force of the single pick 

The Goktan’s [18] semi-empirical formula as shown in Eq. (6) is utilized to calculate the mean 
cutting force (ܰ) herein: 

ܼ௠ = ௟ℎ௠ଶߪߨ4 sinଶ[0.5(90 − (ߙ + ߰]cos[0.5(90 − (ߙ + ߰] . (6)

The attack angle (ߛ, degrees) and the friction angle between the pick and coal (߰, degrees) are 
considered as shown in Fig. 5. 

 
Fig. 5. Pick acting symmetrically on a buttock of rock [18] 

In Eq. (6), ߪ௟ is the tensile strength of the coal or rock (Pa), ℎ݉ is the mean cutting depth (m) 
of the pick calculated by Eq. (7): 

ℎ௠ = 1 − cos߮௨߮௨ ௤߱݉ݒߨ2 . (7)
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In Eq. (7), ߮௎ = for the front drum, while ߮௨ ߨ = arcos[(32/݀ܦ −  for the back [(2/݀ܦ)/(ܪ
drum, ܦௗ is the diameter of the drum (m), ܪ is the height of the coal seam (m), ݉ is the amount 
of the picks in a single transversal line, ߱  is the drum speed (rad/s), ݒ௤  is the hauling  
speed (m/min). 

3.2. Calculation of the mean drum load 

The cutting forces of all the picks are summed for the drum load. The mean drum load is 
calculated as Eq. (8): 

ௗ௠ܯ = ෍(ܼ௠௜ܦ௜ ௖ܰ௜ே೎೗
௜ୀଵ /2 ). (8)

In Eq. (8), ܼ௠௜ ௜ܦ , , ௖ܰ௜( ௖ܰ௜ = ݑ߮)0.5 ⁄ߨ ) ௖ܰ௧௜), and ௖ܰ௧௜  are the mean cutting force of the 
picks (N), drum radius from the drum centre to the pick top (m), amount of picks participating in 
cutting, and total amount of the picks on the ݅th (݅ =1, 2, …, 12, as shown in Fig. 6) transversal 
line respectively. ௖ܰ௟ is the total amount of the transversal lines. Fig. 7 shows the variation of the 
mean drum load with the drum rotating speed and hauling speed.  

Fig. 6. Layout of the pick  
on the drum 

 
Fig. 7. Variation trend of the mean drum load with the 

drum rotating speed (݊ௗ) and hauling speed (ݒ௤) 

4. Speed adjusting schemes 

From Fig. 7, it is observed that the drum load decreases when the drum rotating speed increases 
or the hauling speed decreases. That is, when the drum load exceeds the allowable value, the 
shearer control system can reduce the drum load by increasing the drum rotating speed and 
decreasing hauling speed jointly or separately. How to control drum rotating speed and hauling 
speed in practical application is what to be studied in the control strategy of the unmanned shearer. 
It is difficult to mount the torque sensor on the drum due to serious vibration and shock of the 
drum, so the stator current of the drum motor is used as the feedback signals of the shearer control 
system to reflect the drum load. The stator current used as feedback signals is not what directly 
measured from the stator, but the root mean square (RMS) of the stator current with low pass 
filtered. The flow diagram to adjust speeds is shown in Fig. 8 when the drum load exceeds the 
allowable value.  

The drum load can be reduced by increasing the drum rotating speed and decreasing hauling 
speed jointly or separately. There are many combinations to adjust the drum rotating speed and 
hauling speed, that is, speed adjusting schemes. Two schemes are used when the drum load 
exceeds the allowable value in this study, including: (1) increasing the drum rotating speed directly 
and maintaining the hauling speed stable; (2) decreasing the hauling speed firstly, then increasing 
the drum rotating speed, finally increasing the hauling speed to the original value. In practical 
application, the hauling speed usually maintains stable to obtain maximum coal production, so the 
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hauling speed does not change before and after the speed adjusting process in these two speed 
adjusting schemes.  

 
Fig. 8. Flow diagram to adjust speeds when the drum load exceeds the allowable value 

The drum rotating speed is adjusted by changing the speed of driving motor, for the drum 
speed is proportional to the motor speed. The drum rotating speed is reflected by the motor speed 
in speed adjusting schemes. The speed adjusting schemes are shown in Fig. 9. 

 
a) First strategy 

 
b) Second strategy 

Fig. 9. Schemes of adjusting the drum driving motor speed (݊௠) and hauling speed (ݒ௤)  

5. Electromechanical dynamic simulation and analysis 

When the shearer cuts from soft coal seam to hard coal seam, the drum load may exceed the 
safety value of the unmanned long-wall shearer if the drum rotating speed and hauling speed are 
not adjusted. Therefore, the drum rotating speed and hauling speed should be adjusted when the 
drum load is found to be too high. Two kinds of speed adjusting schemes are proposed in  
Section 3. The electromechanical dynamic simulation is conducted for both the strategies.  

Table 1. Parameters of the cutting transmission system 
 Parameters 

Electric motor 3-pase DTC asynchronous induction motor, rated power ܲ = 300 kW; 
Rated line voltage ܷܮ = 1140 V, the initial rotating speed is 1200 r/min 

Mechanical system 

݇௠௣௘ = 104 Nm/rad; ܿ௠௣௘ = 102 Nm/s·rad-1;  ݇௣ௗ =109 Nm/rad; ܿ௣ௗ = 0 Nm/s·rad-1; ܬௗ = 350 kg/m2; 
Planetary gear set: the teeth number of the sun, planet,  

and ring are 16, 24, and 64 respectively; the module is 9 mm 

The advantages and disadvantages of the schemes are analyzed based on the simulation. At 
last, some advices are given to develop the speed control strategy for the unmanned long-wall 
shearer. The parameters of the cutting transmission system are shown in Table 1. The simulation 
is conducted in MATLAB/Simulink. The DTC induction motor block in Simulink is chosen, and 
the model of mechanical part is written in ݏ -function, and then, they are connected for the 
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complete model and simulated. 

5.1. Electromechanical dynamic analysis for the first speed adjusting scheme 

The rotating speed of the motor during the simulating time is shown in Fig. 10 for the first 
speed adjusting scheme. It is the transient process at the beginning of the simulating time. The 
rotating speed reaches to steady-state at about 0.5 s. This initial transient process will be ignored 
in the following analysis for the clarity of illustration in this study. The motor speed varies as the 
first speed adjusting scheme in Fig. 9(a). Fig. 11 shows the rotating speed of the drum. The 
variation trend of the drum rotating speed is same with that of the motor speed as shown in  
Fig. 11.  

 
Fig. 10. Rotating speed of the electric motor (݊௠)  

for the first speed adjusting scheme 

 
Fig. 11. Rotating speed of the drum (݊ௗ)  

for the first speed adjusting scheme 

The drum load for the first speed adjusting scheme is shown in Fig. 12. The drum load 
decreases obviously with the increase of the drum speed. The fluctuation of the drum load also 
decreases as the drum load decreases. Fig. 13 shows the dynamic meshing force of the sun-planet 
gear pair of the planetary gear set for the first speed adjusting scheme. The dynamic meshing force 
decreases as the drum load decreases, and the fluctuation of the dynamic meshing force also 
decreases. In a word, the drum load and dynamic meshing force can be reduced effectively by 
increase the drum rotating speed.  

 
Fig. 12. Drum load (ܯௗ) for the first speed  

adjusting scheme 
 

 
Fig. 13. Dynamic meshing force (ܨ௠௘) of the sun-

planet gear pair of the planetary gear set  
for the first speed adjusting scheme 

Fig. 14 shows the root mean square (RMS) of the a-phase stator current of the driving motor 
of the drum that is low pass filtered with cut-off frequency of 20 Hz. At beginning (0.5-1 s), the 
stator current is stable, because the motor speed is steady. During 1-2 s, the stator current increases 
obviously. During this period, the drum motor speed increases, therefore, larger electromagnetic 
torque is needed to accelerate the motor, which leads to the obvious increase of the stator current. 
After 2 s, when the acceleration process is over, the stator current decreases to less than the initial 
value of 0.5-1 s, because the drum load after 2 s is smaller than that during 0.5-1 s. The RMS of 
the stator current is positive correlation to the drum load except the acceleration process. Not only 
the drum load but also the acceleration torque needs to be balanced by the electromagnetic torque 
of the motor during the acceleration process. 

From the above analysis, the first speed adjusting scheme is proved to be an effective way to 
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reduce the drum load and dynamic meshing forces. However, some problems exist in the first 
speed adjusting scheme. The RMS of the stator current is usually utilized as the feedback signal 
to reflect the drum load for the shearer control system. The drum load is assumed to exceed the 
allowable value at beginning (0.5-1 s), that is, the stator current exceeds the allowable value at the 
beginning (0.5-1 s).  

 
Fig. 14. Roots mean square of a-phase stator current (݅௦௔௥௠௦) of the DTC induction motor  

(cutting motor) with low-pass (20 Hz) filtered for the first speed adjusting scheme 

Then, the drum rotating speed is increased to reduce the drum load at 1 s due to the effect of 
the shearer control system as shown in Fig. 8. However, if the drum rotating speed increases 
directly to reduce the drum load, the stator current will exceed the allowable value as shown in 
Fig. 14, as a result, the control system will wrongly consider the drum load increases and 
accelerate the motor to a larger speed. This circulation will make the drum rotating speed increase 
unceasingly, that is, the control system is unstable. If the stator current does not exceed the 
allowable value during the speed adjusting process (including the drum speed acceleration 
process), the control is stable.  

5.2. Electromechanical dynamic analysis for the second speed adjusting scheme 

Fig. 15 shows the rotating speed of the motor during the simulating time for the second speed 
adjusting scheme. The motor speed varies as the second speed adjusting scheme in  
Fig. 9(b). Fig. 16 shows the rotating speed of the drum. The variation trend of the drum speed is 
same with that of the motor speed. The fluctuation of the drum speed decreases or increases as the 
drum load decreases or increases as shown in Fig. 17. The drum load for the second speed 
adjusting scheme is shown in Fig. 17. 

 
Fig. 15. Rotating speed of the electric motor (݊௠)  

for the second speed adjusting scheme 

 
Fig. 16. Rotating speed of the drum (݊ௗ)  
for the second speed adjusting scheme 

At beginning (0.5-1 s), the drum load is stable, because the drum rotating speed and hauling 
speed is steady. During 1-2 s, the drum load decreases obviously as the hauling speed decreases. 
During 2-3 s, the drum load decreases continually as the drum rotating speed increases.  
During 3-4 s, the drum load increases as the hauling speed increases. After 4 s, when the variable 
speed process is over, the drum load decreases to less than the initial value (0.5-1 s). The drum 
load decreases obviously after the variable speed process, so does the fluctuation of the drum load. 
Fig. 18 shows the dynamic meshing force of the sun-planet gear pair of the planetary gear set for 
the second speed adjusting scheme. The dynamic meshing force decreases as the drum load 

t (s)
0.5 1 1.5 2 2.5 3

90

100

110

120

130



2526. ELECTROMECHANICAL DYNAMIC ANALYSIS FOR THE CUTTING TRANSMISSION SYSTEM OF THE UNMANNED LONG-WALL SHEARER UNDER 
VARIABLE SPEED PROCESS. CHANGZHAO LIU, DATONG QIN, YINGHUA LIAO 

3200 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. AUG 2017, VOL. 19, ISSUE 5. ISSN 1392-8716  

decreases, and the fluctuation of the dynamic meshing force also decreases. In a word, the drum 
load and dynamic meshing force can be reduced effectively by the second speed adjusting scheme. 

 
Fig. 17. Drum load (ܯௗ) for the second speed 

adjusting scheme 
 

 
Fig. 18. Dynamic meshing force of the sun-planet 

gear pair (ܨ௠௘) of the planetary gear set  
for the second speed adjusting scheme 

Fig. 19 shows the root mean square (RMS) of the a-phase stator current of the driving motor 
of the drum that is low pass filtered with the cut-off frequency of 20 Hz. At beginning (0.5-1 s), 
the stator current is stable, because the speed of the drum motor, hauling speed, and drum load are 
steady. During 1-2 s, the stator current decreases obviously, because the drum load decreases due 
to the decrease of the hauling speed. During 2-3 s, the stator current increases obviously. During 
this period, the speed of the drum motor increases, thus, larger electromagnetic torque is needed 
to accelerate the rotor, which leads to the obvious increase of the stator current.  

At 3 s, when the acceleration process of the drum motor is over, the stator current decreases 
obviously. During 3-4 s, the stator current increases, because the drum load increases due to the 
increase of the hauling speed. After 4 s, when the variable speed process is over, the stator current 
decreases to less than the initial value (0.5-1 s), because the drum load after 4 s is smaller than 
that during 0.5-1 s.  

 
Fig. 19. Roots mean square of a-phase stator current (݅௦௔௥௠௦) of the DTC induction motor  

(drum driving motor) with low-pass (20 Hz) filtered for the second speed adjusting scheme 

From the above analysis, the second speed adjusting scheme is also proved to be an effective 
way to reduce the drum load and dynamic meshing forces, but the speed adjusting time is longer. 
The RMS of the stator current is usually utilized as the feedback control signal to reflect the drum 
load for the shearer control system. The drum load is assumed to exceed the allowable value at 
beginning (0.5-1 s), that is, the stator current exceeds the allowable value at the beginning  
(0.5-1 s), then the drum rotating speed and hauling speed are adjusted during 1-4 s due to the effect 
of the shearer control system as shown in Fig. 8. The hauling speed is reduced to decrease the 
drum load before accelerating the drum rotating speed, therefore, the stator current is under the 
allowable value all the time during the variable speed process. To this aspect, the control system 
with the second speed adjusting scheme is stable. 

5.3. Comparison of torsional vibration characteristics between scheme 1 and 2 

To compare the torsional vibration characteristics between scheme 1 and 2, the drum angular 
acceleration in time domain is given in Fig. 20, and the time frequency maps are given in Fig. 21 
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(0-8000 Hz) and Fig. 22 (0-600 Hz). For the scheme 1, the drum speed is increased directly from 
1 to 2 s. The fluctuating amplitude of the angular acceleration decreases after the variable speed 
process, because the drum load decreases as shown in Fig. 12. For the scheme 2, the drum load 
decreases from 1 to 2 s and increases from 3 to 4 s, because of the hauling speed decreases and 
increases, correspondingly, the fluctuating amplitude of the angular acceleration decreases and 
increases. During 1-2 s in Fig. 20(a) and 2-3 s in Fig. 20(b), the drum speed increases, that is, these 
durations are unstable processes.  

 
a) Scheme 1 

 
b) Scheme 2 

Fig. 20. Drum angular accelerations of scheme 1 

 
a) Scheme 1 

 
b) (0-8000 Hz) 

Fig. 21. Time frequency maps of the drum angular accelerations of scheme 1 

 
a) Scheme 1 

 
b) (0-600 Hz) 

Fig. 22. Time frequency maps of the drum angular accelerations of scheme 1 

From above analysis, we can see both schemes are unstable processes, so the time-frequency 
analysis is conducted. The amplitudes around 5110 Hz and 4576 Hz stand out along the time axis, 
because the 153rd and 137th order meshing frequency come across the natural frequency. The 
one-tooth-contact and two-teeth-contact alternate in gear system, so different natural frequencies 
can be obtained in different meshing conditions. Two kinds of natural frequencies are shown in 
Table 2. 



2526. ELECTROMECHANICAL DYNAMIC ANALYSIS FOR THE CUTTING TRANSMISSION SYSTEM OF THE UNMANNED LONG-WALL SHEARER UNDER 
VARIABLE SPEED PROCESS. CHANGZHAO LIU, DATONG QIN, YINGHUA LIAO 

3202 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. AUG 2017, VOL. 19, ISSUE 5. ISSN 1392-8716  

Table 2. Two kinds of natural frequencies obtained in different meshing conditions (Hz) 
 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 
1 0 19 87 1003 2341 2341 2535 5109 22696 
2 0 24 66 710 1532 1532 1706 4573 23318 

Though these two kinds of natural frequencies are obtained in different meshing conditions, 
the resonance of both 8th frequencies are excited as shown in Fig. 21. Therefore, all the natural 
frequencies obtained in different meshing conditions should be paid attention to for the gear 
transmission system, and it is not enough to just consider the natural frequency with the mean 
meshing stiffness. Compared Fig. 21(a) and (b), the amplitude in Fig. 21(b) is smaller than that in 
Fig. 21(a) during variable speed process (1-2 s in Fig. 21(a), 2-3 s in Fig. 21(b)), because the drum 
load is smaller in Fig. 21(b). The partial enlarged details of Fig. 21 in 0-600 Hz are shown in 
Fig. 22. The meshing frequency and its multiplications increase linearly during the variable speed 
process. 

5.4. Experimental investigation 

To validate the theoretical results, the scaled-down test rig is constructed. The overall scheme 
of the test rig is shown in Fig. 23. Three main parts are contained in test rig, including the power 
source, gear transmission system, and loading equipment. The power source is composed of the 
DTC converter and electric motor. The realistic cutting transmission is so large that it is nearly 
impossible to put the realistic cutting transmission on the test rig, so the gear transmission is 
composed of a two-stage parallel-axis gear reducer and a planetary gear reducer to simulate the 
realistic cutting transmission.  

 
Fig. 23. Overall scheme of the test rig 

The loading equipment is composed of a dynamometer, an increasing gearbox, and a 
torque/speed transducer. The torque/speed transducer 1 is used to measure the input torque/speed 
of parallel-axis gear reducer estimate the dynamic meshing force of the high-speed stage of 
parallel-axis gear reducer. The torque/speed transducer 2 is used to measure the input torque/speed 
of the planetary gear set to estimate the dynamic meshing force of the sun-planet gear pair of the 
planetary gear set. The torque/speed transducer 3 is used to measure the realistic drum load and 
speed. The Photo of the test rig is shown in Fig. 24. 

 
Fig. 24. Photo of the test rig 

Experimental results in time domain of two speed adjusting schemes are shown in Fig. 25. For 
the first scheme, during 1-2 s, the drum speed increase from 29.8 r/min to 32.8 r/min in  
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Fig. 25(a), while the drum load decrease from 4300 Nm to 3192 Nm in Fig. 25(c), the input torque 
of the planetary gear also decrease from 836 Nm to 629 Nm in Fig. 25(e). However, at the 
beginning of drum speed acceleration, the stator current is larger than the initial value as shown 
in the red ellipse C of Fig. 25(g). In brief, after the first speed adjusting process, the drum load, 
dynamic load of the transmission system, and the stator current all decrease. 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
g) 

 
h) 

Fig. 25. Experimental results in time domain of two speed adjusting schemes 

For the second scheme, during 1-2 s, because of the hauling speed decreasing from 3 to  
2 m/min, the drum load decrease from 4300 Nm to 1413 Nm in Fig. 25(d), and the input torque 
of the planetary gear decrease from 836 Nm to 282 Nm in Fig. 25(f). The drum speed increase a 
little because the drum load decrease as shown in the red ellipse A of Fig. 25(b). During 2-3 s, the 
drum speed increase from 30 r/min to 32.6 r/min in Fig. 25(b), so the drum load and input torque 
of the planetary gear decrease continuously in Fig. 25(d, f). During 3-4 s, because of the hauling 
speed increasing from 2 to 3 m/min, the drum load increase from 1065 Nm to 3700 Nm in 
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Fig. 25(d), and the input torque of the planetary gear increase from 213 Nm to 750 Nm in  
Fig. 25(f). 

The drum speed decreases a little because the drum load increase as shown in the red ellipse 
B of Fig. 25(b). In brief, after the second speed adjusting process, the drum load, dynamic load of 
the transmission system, and the stator current all decrease, what’s more, the stator current doesn’t 
excess the initial value during the second speed adjusting process as shown in Fig. 25(h). 

The time frequency maps of the input torque of the planetary gear are given in Fig. 26, which 
can reflect the system torsional vibration. During the variable speed process, the varying frequency 
components are found in Fig. 26, which has the same trend as the simulating results. 

In a word, most of the simulating results are validated by the experimental results to confirm 
the usability of the simulating model. 

 
a) 

 
b) 

Fig. 26. Time frequency maps of the input torque of the planetary gear of two speed adjusting schemes 

6. Conclusions 

The drum shearer is one of the main equipments of the long-wall mining system that has been 
widely used in coal mining for decades. The rotating speed of the drum is usually not adjustable 
at present. The hauling speed is usually reduced when the drum load exceeds the allowable value, 
as a result in decrease of coal production for the mining systems. To overcome this difficulty, the 
drum rotating speed is designed to be adjustable and the direct torque control (DTC) induction 
motor is chosen as the power source of the cutting transmission system for the unmanned 
long-wall shearer. Therefore, the drum load can be reduced by adjust the drum rotating speed 
without decreasing the hauling speed. Two speed adjusting schemes are proposed when the drum 
load exceeds the allowable value including: (1) increasing the drum speed directly and maintaining 
the hauling speed; (2) decreasing the hauling speed firstly, then increasing the drum speed, finally 
increasing the hauling speed to the original value. More attention should be paid to the electrical 
and dynamic characteristics of the cutting transmission system for assessing and developing 
optimal control strategy. Both the schemes are analyzed and compared based on the 
electromechanical dynamic analysis of the drum driving system. Some conclusions are obtained 
for both of the schemes: 

1) The first scheme is quicker, but the control system may be unstable. If the drum rotating 
speed is adjusted when the stator current exceeds the allowable value, the stator current of the 
acceleration process will be much larger than the allowable value, which leads to instability for 
the shearer control system. However, the control system is stable as long as the stator current does 
not exceed the allowable value during the speed adjusting process (including the drum speed 
acceleration process), when the drum rotating speed is adjusted just for satisfying the requirement 
of the mining process. 

2) The second scheme is stable, because the stator current does not exceed the allowable value 
during the variable speed process (including the drum speed acceleration process). However, the 
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adjusting time is longer, because both the drum speed and the hauling speed are adjusted, 
moreover, they are adjusted alternately. 

3) The amplitude in the second scheme is smaller than that in the first scheme during variable 
speed process, because the drum load is smaller in the second scheme. The resonance in 
frequencies obtained in different meshing conditions can be excited at the same time, so all the 
natural frequencies obtained in different meshing conditions should be paid attention to for the 
gear transmission system, and it is not enough to just consider the natural frequency with the mean 
meshing stiffness. 

The drum speed and hauling speed should be adjusted simultaneously to avoid the instability 
of the control system and shorten the adjusting time. The adjustment amounts for the drum rotating 
speed and hauling speed are decided by the electromechanical characteristic of the cutting 
transmission system and the drum load characteristic. The drum load is influenced by both the 
drum rotating speed and the hauling speed [18, 23, 24]. The coordination control of the drum 
rotating speed and hauling speed will be investigated in further study. In the mechanical design of 
the cutting transmission system, all the natural frequencies in different meshing conditions should 
be calculated and keep away from the meshing frequency as well as multiplications to avoid 
resonance. 
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