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Abstract. A novel clustering stabilization diagram combined with self adaptive differential 
evolution algorithm is proposed to identify the modal parameters of civil engineering structures. 
Compared with the traditional stabilization diagram, the clustering diagram has drawn more 
attention because it can distinguish physical and spurious modes due to its automatic performance. 
In this paper, a self adaptive differential evolution algorithm is proposed to optimize the initial 
clustering centers so as to improve the clustering stabilization diagram. Moreover, this paper 
presents a new idea that the modal assurance criterion (MAC) composed of mode shapes is 
selected as the ܻ-axis to replace the model orders or damping ratios in existing stabilization 
diagrams. The results of a benchmark test of bridge Z24 and the numerical simulation of a 
continuous beam and a cable-stayed bridge demonstrate the advantages of the proposed 
approaches and the reliability of detecting the modal parameters. 
Keywords: stabilization diagram, parameter identification, fuzzy clustering method, differential 
evolution method. 

Nomenclature ݂ Modal frequency ߶ Modal mode shape ߦ Modal damping ratio 
MAC Modal assurance criterion ݊ Modal order of system ܿ The number of clusters ݌ The number of attributes ܩ The number of generation ܰܲ Population size ܨ Scaling factor in mutation operation ܨ௎, ܨ௅ Upper and lower boundaries of mutation factor ܨ୫ୟ୶, ܨ୫୧୬	 Maximum and minimum value of scaling factor ߙ Decay rate ܴܥ Cross factor in cross operation ܵ Calculated value of dynamic response ܵᇱ Value of dynamic response with noise ߣ௦ Noise level 

1. Introduction 

Structural health monitoring (SHM) of civil engineering structures is increasingly becoming 
essential for the occurrence of unavoidable damage during their service life due to environmental, 
operational and human-induced factors. In SHM, parameter identification is one of the most 
crucial parts prior to detecting the damage sites and extents, and accurate evaluation of residual 
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life. In the literatures of SHM, ambient excitation-based parameter identification methods 
combined with modal analysis technique are widely used. Most research efforts had been 
implemented based on stochastic subspace identification (SSI) method [1-5], wavelet transform 
method [6], Hilbert transform method [7], and modal analysis in beams [8, 9]. 

Stabilization diagram used in stochastic subspace identification technique has become a 
standard tool to estimate modal parameters of civil and mechanical engineering structures in recent 
decades. The main purpose using the stabilization diagram as a post-processing place for 
parameter identification is to distinguish physical modes and spurious modes. There are three main 
causes for spurious modes: First, numerical mathematical spurious modes will arise due to an 
over-estimation of the system order. Second, noise spurious modes will arise due to physical 
reasons, e.g. excitation and noise color. Finally, analog or digital filtering of the data also produces 
numerical spurious poles. The stabilization diagram in combination with the modal similarity 
index is adopted to effectively indicate spurious modes resulting from noise and model 
redundancy [10, 11]. Refs. [12, 13] presented the standard deviation of the natural frequencies as 
horizontal bars in the stabilization diagram. Such a threshold on the standard deviations 
significantly clears up the diagram, which hence can be used as a stabilization criterion of the 
identified modes. 

Stabilization diagram is simply a plot of different model orders or damping ratios versus the 
frequencies identified at each of model orders. Generally, the typical stabilization diagram is a 
graph where the frequency is plotted as the ܺ-axis and the model order as the ܻ-axis [14-17]. 
However, the major problem faced by this stabilization diagram is the need for human interaction. 
In recent years, fuzzy clustering method was introduced as a tool to automatically assess 
stabilization diagrams figured by damping ratio and frequency. Ref. [18] developed a new 
technique for the automation of the stability diagrams using the modal phase collinearity and 
proposed a new cluster validity index which can solve the problem caused by the scale of 
measurements and which can be directly calculated from non-normalized data. Ref. [19] presented 
an automatic stabilization diagram based on a hierarchical clustering algorithm to detect the first 
twelve modes for a long span arch bridge combined with the covariance driven stochastic subspace 
identification method.  

In this paper, a novel clustering stabilization diagram is proposed to detect modal parameter. 
The modal order or damping ratios are replaced with the MAC composed of mode shapes. As a 
consequence, the uniqueness of the mode shapes guarantees the accuracy of the proposed 
approach. Besides, we propose another optimization algorithm, i.e. self adaptive differential 
evolution (SADE) algorithm to implement the initialization of cluster centers so as to increase the 
computational efficiency. 

This study is organized as follows: In Section 2, the stabilization diagrams are presented 
including the traditional stabilization diagrams, clustering stabilization diagrams and proposed 
stabilization diagrams in this study. Section 3 gives the improvements for proposed clustering 
stabilization diagram to solve the two problems, one is the selection of the column vector in MAC 
and another is the initialization of the clustering centers. In Sections 4 and 5, the performance of 
the new stabilization diagram is demonstrated with a benchmark test of bridge Z24 and numerical 
simulation results from a continuous beam and cable-stayed bridge. 

2. Stabilization diagrams 

A stabilization diagram is simply a plot figured by model orders and modal parameters 
identified at each of these orders such as the frequencies, damping ratios and mode shapes. The 
aim is that physical modes should show up with consistent frequencies, damping ratios and mode 
shapes at various model orders whereas the spurious ones could be expected to show more erratic 
behaviour. Due to the difficulty to determine the system order, the actual implementation can be 
executed by initially choosing a sufficiently high order for the state space model. System 
identification is performed with every model order. The poles correspond to an order are compared 
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with one order lower system, and they will be plotted in the diagram with different symbols when 
they meet the following preset criteria as: (݂(݊) − ݂(݊ + 1)) ݂(݊)⁄ ×100% < ௙,(1ߜ − ,݊)ܥܣܯ ݊ + 1)×100% < (݊)ߦ),థߜ − ݊)ߦ + 1)) ⁄(݊)ߦ ×100% < .కߜ 	 (1)

where, ݂, ߶ and ߦ are the frequency, mode shape and damping ratio, respectively. ߜ௙, ߜథ and ߜక 
are the stability limits with respect to ݂, ߶ and ߦ, respectively. In this study, the preset stability 
limits are 1 % for the frequency ߜ௙, 2 % for mode shape ߜథ and 5 % for the damping ratio ߜక. 
MAC (modal assurance criterion) represents the degree of correlation between two vectors (mode 
shapes). When the value of MAC equals 1, these vectors are inseparable; when the value of MAC 
equals 0, the vibration modal vectors are orthogonal and the identified mode shapes for the 
adjacent model orders are totally different. MAC is defined as follows: 

,݊)ܥܣܯ ݊ + 1) = |߶(݊)்߶(݊ + 1)|ଶ(߶(݊)்߶(݊))(߶(݊ + 1)்߶(݊ + 1)).	 (2)

2.1. Traditional stabilization diagram  

The most common stabilization diagram is called the “traditional stabilization diagram (TSD)” 
in this study, which is a graph where the frequencies are plotted as the ݔ-axis and the model orders 
as the ܻ-axis [14-17]. The TSD shows the poles of a system at different model orders. Physical 
poles occur at the same frequency at increasing model orders forming a vertical column of  
poles [11], whereas the spurious numerical poles will not stabilize during this process and can be 
disregarded more easily [15-20]. The modal parameters are computed from the physical modes at 
the same order. Fig. 1(a) shows a typical TSD, which is an example of a simple beam bridge 
excited by white noise in the mispen section (node 6). The finite element model of the beam is 
discretized into equal length beam elements with 11-node and 10-element, in which the length of 
each element is 4 meter, the area is 1.075 square meter, the height of the beam is 2 meter and the 
material density is 7800 kilograms per cubic meter. 

It should be noted that the most crucial step of using TSD to identify parameter identification 
is selecting stable vertical column of poles. In the past, the problem was solved by the interpersonal 
interaction of expert engineers. However, it is the incorrect determination of the model order and 
difficulties in discriminating between the physical and the spurious, numerical poles. Thereby, the 
automation of selecting stable poles became a substantial issue in recent years. The sequential 
procedure involved in its construction can also interrupt proper grouping of the stable modes once 
an automatic interpretation algorithm is applied. When a certain stable mode fails to appear in a 
specific model order, then the grouping procedure might lose track of this mode while 
investigating the remaining model orders [18]. Moreover, the easy performance is to select the 
longer vertical column of poles by certain threshold. Pelin Gundes Bakir [11] proposed the ratio 
of the stable poles to the order to implement the automation of the pole selection process from 
stabilization diagrams. If this ratio is less than 1/3, then this bin (vertical column of poles) is 
disregarded.  

2.2. Clustering stabilization diagram 

Clustering stabilization diagram (CSD) is a relatively new post-processing tool based on 
clustering technique, which also shows the poles of a system at different model orders. In present 
CSD [11, 19, 21], the frequency is plotted on the abscissa and the damping ratio is plotted on the 
ordinate as shown in Fig. 1(b). After the performance of system identification, the poles satisfied 
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the Eq. (1) will show in the stabilization diagram. The poles from different model orders tend to 
focus on one point for the physical modes. Instead, the poles involved in spurious modes will 
disperse and even cannot form a vertical column like the TSD.  

The core technique of the CSD is the clustering method. The most widely used clustering 
method is the fuzzy c-means clustering algorithm (FCM). In the last decades, many researches are 
focused on improving the standard FCM [20]. However, the clustering methods from FCM are 
very sensitive to noise because they fail to consider any spatial information. To make FCM more 
robust to noise, the kernel fuzzy clustering algorithms are proposed [21-24]. In this study, the 
kernel fuzzy clustering method (KFCM) is used to divide poles into several clusters for parameter 
identification. The KFCM calculates the objective function through the Euclidean distance and 
then can improve the Euclidean distance to the different distance measure in the same space.  

It is worth mentioning that the major advantage of the CSD superior to the TSD is the 
automatic performance of the mode selection process [11, 18, 19, 21], even though the clustering 
process somewhat adds the time of running procedure. The automatic process of CSD depends on 
the way to compute the distance between the objects concerned [19]. M. Scionti calculated average 
Euclidian distance of all the members to the cluster prototype and defined a radius of a circle 
around each cluster. The smaller the circle is, the better the quality of the cluster is. Pelin Gundes 
proposed a new cluster validity index to compute the inter cluster distance between two  
modes [11]. If the index between the two modes is less than a certain threshold value, then the two 
modes represent the same mode and should be included in the same cluster. Otherwise, the clusters 
represent different modes.  

The key problem need to be solved for CSD is the determination of the number of clusters. 
That can be difficult especially for automated procedures, which may need extensive 
preprocessing to determine the initial number of clusters. One way to overcome this is a process 
of similarity based cluster merging [21]. 

Another problem for CSD is the initialization of the clustering centers. In most cases, it will 
be the different results for different initial clustering centers. Therefore, a substantial need has 
recently emerged for the optimization of the initial clustering centers. In Ref. [21], the Genetic 
Algorithm (GA) has been used to learn cluster centers and to initialize the Fuzzy-C-Means 
clustering technique membership matrices. 

2.3. Proposed stabilization diagram  

As mentioned previously, the excess amount of user interaction required for picking up the 
system modes is a drawback of the TSD. In order to overcome these difficulties and automate the 
selection process, the CSD is adopted to select the stable modes from the large poles of parameters 
identified at various model orders. However, in the existent clustering stabilization diagrams, 
damping ratios are adopted as the ܻ-axis, whereas they are not very suitable to distinguish modes, 
owing to the fact that different modes can have the same modal damping ratios and because their 
estimates present a high scatter [19]. For this reason, we propose a CSD with any column vector 
in the MAC matrix as the ܻ -axis replacing the damping ratios as shown in Fig. 1(c). The 
consequence should be the poles from different model orders further tend to focus on one point 
for the physical modes than the CSD with damping ratios vs frequencies. Moreover, the compared 
circle is presented, whose radius is the average value of the distances from every pole to clustering 
centers. Thereby, the proposed CSD can achieve automatic identification, because the larger is the 
circle, the worse the identified result is. In Fig. 1(c), after the number of clusters is determined as 
five, the objective modes of the first four modes can be judged as the physical modes automatically 
while the fifth mode corresponding to the larger circle will be removed.  

3. Improvements of proposed CSD 

Many problems require to be solved for proposed CSD: 
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• How to select the column vector in MAC matrix as the ordinate of proposed CSD.  
• How to initial the clustering centers. 

 
a) 

 
b) 

 
c) 

Fig. 1. Stabilization diagrams: a) TSD: ○, stable poles with the mode shapes; +, stable poles with the 
frequency; corrected: (○+), stable poles with both the frequency and mode shape, b) CSD with the 

frequency vs damping ratios: ●, data poles met Eq. (1), c) Proposed CSD with the frequency versus MAC: 
☆, clustering centers; +, nearest poles from the centers; compared circles are plotted with the circles which 

look like the ellipse or vertical bars due to the different proportion between the ܺ-axis and ܻ-axis 

3.1. Selection of the column vector in MAC 

Due to the MAC is a two-dimensional matrix, the one dimensional column vector require to 
be selected in the process of drawing the clustering view. In order to illustrate how to select the 
column vector in MAC matrix, the example of the simple beam bridge mentioned above is also 
used. The columns from 1 to 6 in MAC are used to contrast each other. It should be noted that the 
selected columns from 1 to 6 can represent the whole performance of MAC due to its symmetry. 
By using the proposed CSD shown in Fig. 2 combined with the covariance-driven stochastic 
subspace identification method, the results of the first four mode shapes identified with respect to 
the column vectors from 1 to 6 in MAC matrix are shown in Fig. 3. Accordingly, the results of the 
first five frequencies identified are listed in Table 1. 

Table 1. Results of the first five frequencies with respect to column vectors from 1 to 6 in MAC 
Modal order Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 

1 3.272 3.273 3.273 3.273 3.272 3.272 
2 12.354 12.363 12.355 12.350 12.350 12.350 
3 23.464 23.462 23.464 23.464 23.461 23.464 
4 32.103 32.102 32.103 32.103 32.101 32.103 
5 37.561 37.619 37.506 37.561 37.538 37.619 
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The results from Fig. 3 and Table 1 show that the selection of different column vector in MAC 
can almost obtain the same modal parameters. Thereby, we can select the any column vector in 
MAC as the ordinate in the proposed CSD.  

 
Fig. 2. Proposed clustering diagrams with the column vectors from 1 to 6 in MAC 

 
a) Mode 1 

 
b) Mode 2 

 
c) Mode 3  

 
d) Mode 4 

Fig. 3. Results of the first four mode shapes with respect to column vectors from 1 to 6 in MAC 
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3.2. Initialization of the clustering centers 

3.2.1. Self-adaptive differential evolution method 

The initialization of the clustering centers is a key factor for the identification performance of 
the clustering diagrams due to the different clustering centers can get the different identification 
results. If the clustering centers are random, the proposed CSD usually cannot be obtained by once 
operation of the program. Thereby, a self-adaptive differential evolution method (SADE) [25-27] 
is proposed to improve the CSD through optimization of the initial clustering centers.  

3.2.1.1. Coding 

The SADE approach uses real coding, and the individuals are the solutions of the optimization 
problem. If the data in CSD are divided into ܿ clusters with ܲ attributes in each cluster, the coding 
can be expressed as: 

௜ܺ,ீ = ቀ൫ݔଵଵ, ⋯,ଵଶݔ , ,ଵ௣൯ݔ ൫ݔଶଵ, ⋯,ଶଶݔ , ⋯ଶ௣൯ݔ , ൫ݔ௖ଵ, ⋯,௖ଶݔ , 	.௖௣൯ቁݔ (3)

3.2.1.2. Mutation 

The mutation operation is the biggest difference between the SADE and GA or other 
algorithms, which is the crucial step in generating the new individual. The middle individual ௜ܻ,ீ	  
is generated by the linear combination obtained using the following equation: 

௜ܻ,ீ = ܺ௥ଵ,ீ + ܨ ⋅ ൫ܺ௥ଶ,ீ − ܺ௥ଷ,ீ൯,	 (4)

where ܺ௥ଵ,ீ, ܺ௥ଶ,ீ and ܺ௥ଷ,ீ are three samples selected randomly from the population before the 
mutation operation. 3ݎ ,2ݎ ,1ݎ ∈ {1,2, … , 1ݎ ,{ܲܰ ≠ 2ݎ ≠ 3ݎ ≠ ݅, and ܨ is the scaling factor that 
determines the range of difference vectors and its magnitude scale is from 0 to 1. 

Naturally, ܺ௥ଵ,ீ is disturbed by the random-deviation through the weighted difference between ܺ௥ଶ,ீ and ܺ௥ଶ,ீ in the mutation process. Thereby, the compound differences among the individuals 
become plentiful and the diversity of population is improved. 

Above all, ܨ  is an essential parameter in SADE because it improves the diversity of the 
population. A small ܨ will lead to extensive exploitation in the search space, whereas a large ܨ 
will lead to over exploration and low convergence speed. Therefore, a self-adaptive mutation 
factor is proposed in this paper, i.e., a small ܨ will be adopted to improve the good individuals 
continually when the value of fitness function is enough large and vice versa.  

Moreover, to avoid the premature phenomenon, the value of the scale factor ܨ should be large 
in the initial stage of the algorithm such that the algorithm can maintain the diversities of the 
individual, search the global optimum value and speed up the convergence speed of the optimal 
solution. In a later stage of the algorithm, the speed of the scale factor ܨ should be decreased, 
which should make it easy to search for the local optimum value. The dynamic adaptive 
adjustment equation for the scale factor ܨ is shown as follows [28, 29]: (ݐ)ܨ = ୫୧୬1ܨ + ቀܨ୫୧୬ܨ୫ୟ୶ − 1ቁ ⋅ ݁ିఈ௧,	 (5)

where, ݐ is the iteration, ܨ୫ୟ୶ and ܨ୫୧୬ are the maximum and minimum value of the scaling factor, 
respectively. To maintain the balance between the diversity and the convergence, the value of ܨ 
is [0.5, 1]. ߙ is a factor to determine the initial decay rate of the curve, the range of ߙ is [0, +∞], 
in this paper, the value of ߙ is 0.001. 
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3.2.1.3. Cross 

The cross operation is undertaken to ௜ܻ,ீ	  and ௜ܺ,ீ to improve the diversity of the population. 
The new candidate individual is ௜ܷ,ீ = ,ீ,ଵ௜ݑ) ⋯,ீ,ଶ௜ݑ ,  ஽௜,ீ), in which ݅ is from 1 to ܰܲ and ݆ isݑ
from 1 to ܦ, and ݑ௝௜,ீ is expressed as: 

ீ,௝௜ݑ = ൜ݕ௝௜,ீ, (randܾ(݆) ≤ ݆		or			ܴܥ = ,ீ,௝௜ݔ,(݅)ݎܾ݊ݎ else, 	 (6)

where ܴܥ ∈ [0,1] is the cross factor determining the probability using the middle individuals to 
replace the candidate individuals. randܾ(݆) ∈ [0,1] is the uniformly distributed random number, 
and ݎܾ݊ݎ(݅) ∈ [1, 	ீ,is any random integer ensuring that ௜ܷ,ீ obtains a variable from ௜ܻ [ܦ  at least. 

3.2.1.4. Selection 

In the selection operation, the fitness of the candidate individual ௜ܷ,ீ is calculated and then 
compared with the fitness of the individual ௜ܺ,ீ. The purpose is to determine whether to replace 
the current individual with the candidate individual: 

௜ܺ,ீାଵ = ൜ ௜ܷ,ீ, ݂( ௜ܷ,ீ) < ݂( ௜ܺ,ீ),௜ܺ,ீ, else. 	 (7)

The selection operation is executed after performing the mutation and cross operations. 
Meanwhile, the parent individuals compete with the new candidate individuals one by one. 
Therefore, the new individuals always enter into the next generation with equal opportunities, i.e., 
the poor individuals are not discriminated in the course of the selection operation. 

3.2.2. Initialization  

As shown in Figs. 4(a) and (b), the random initialization cannot guarantee the success rate 
effectively due to the excessive concentration of clustering centers. For example, a typical failed 
CSD (Fig. 4(c)) will bring out when the program runs many times. In this study, the self-adaptive 
differential evolution (SADE) is presented as a good tool to initiate the clustering centers. The 
proposed CSD optimized by the SADE is figured in Fig. 4(d), which can be obtained only by a 
single operation of the procedure, i.e., there are the same results in the case of multiple times to 
rerun the procedure. It also can be shown from Figs. 4(a) and (d) that, for the CSD in (a), the 
clustering centers are centralized so as to the more number of iterations is required to gain the 
correct results than the CSD in (d), and the clustering centers in (d) are clearly improved. 

4. Benchmark test 

In the section, the benchmark of bridge Z24 is chosen to verify the proposed method. Some 
control parameters used in the process of parameter identification for the benchmark test and two 
examples in Section 5 are same given in Table 2. 

Here, the covariance-driven stochastic subspace identification (CDSSI) method are applied to 
detect the modal parameter, which has been proved that is one of the most robust and accurate 
system identification methods for the engineering structures [1-5]. The CDSSI can identify the 
modal parameters via singular value decomposition of the output covariance matrices based on 
the stochastic state space model. However, it should be noted that the focus of this paper is on the 
stabilization diagram combined with the SADE method, rather than the CDSSI method. Therefore, 
in the benchmark test and the numerical simulations in Section 5, the CDSSI method is applied, 
but isn’t introduced in detail. The flow chart of the CDSSI with the CSD and SADE is  
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shown in Fig. 5. 

Table 2. Control parameters used in the process of parameter identification 
Parameter Value 

Model orders ݊ 20-150 
Limit value of frequency  1 % 
Limit value of mode shape 2 % 
Population size ܰܲ 20 
Upper boundaries of scaling factor ܨ௎ 1 
Lower boundaries of scaling factor ܨ௅ 0 
Cross factor 0.5 ܴܥ 

 

 
a)  

 
b)  

 
c)  

 
d)  

Fig. 4. Stabilization diagrams for the problem of initialization: a) CSD under the random initialization, 
b) Enlarged view for the initialized clustering centers in a), c) Failed CSD lusting the second mode,  

d) CSD optimized by the SADE; ⨀ the initial clustering centers, the running tracks  
of the clustering centers are plotted using the dash line with small circles 

Z24 located in Switzerland is a prestressed concrete bridge with three spans: a midspan of  
30 m, two side spans of 14 m each and two cantilevers of 2.7 m (Fig. 6). It should be noted that 
the intermediate piers are clamed into the main girder, while the end supports with triplets of 
columns are connected to the girder via hinges. Columns and the end of piers are embedded in the 
soil. The bridge was artificially damaged in order to study the dynamic response when subjected 
to progressive damage scenarios. The modal data are identified from ambient vibrations before 
and after applying each damage scenario. Details about the experimental data can be found in [30].  

A simplified FE model is built with ANSYS software, in which 98 beam elements are used for 
main girder (62 elements), piers and abutment columns (36 elements), 22 spring elements are used 
to simulate the soil, 6 point mass elements are considered (Fig. 7). Some parameters used in the 
model are displayed in Table 3.  
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Table 3. FE model parameters of bridge Z24  
Parameter Value 

Young’s modulus ܧ଴ = 37.5 GPa 
Shear modulus ܩ଴ = 16 GPa 
Poisson’s ratio ߥ = 0.2 

Soil stiffness 

Under the piers, at 14 and 44 m 
௩,௣ܭ = 180·106 N/m ܭ௛,௣ = 210·106 N/m 

Under columns, at 0 and 58 m 
௩,௖ܭ = 100·106 N/m ܭ௛,௖ = 100·106 N/m 

At abutments 
௩,௔ܭ = 180·106 N/m ܭ௛,௔ = 200·106 N/m 

Around columns 
௩,௔௖ܭ = 100·106 N/m ܭ௛,௔௖ = 100·106 N/m 

 
Fig. 5. Flow chart of the CDSSI using the CSD with the SADE 

The FE model is updated by changing the values of Young’s modulus to minimize the 
difference between the analytical and experimental modal parameters. The initial and updated 
bending stiffness distribution along the bridge girder is shown in Fig. 8. Consequently, the 
experimental results are well approximated. The first two bending modes are: 3.89 and 10.30 Hz 
in experimental modal analysis, 3.73 and 10.25 Hz in [30], 3.89 and 10.56 Hz in [31], and 3.79 
and 10.43 Hz in the present CSD (Fig. 9) combined with the CDSSI technique. Regarding the 
mode shapes, the first and fourth modes, symmetric and non-symmetric respectively are displayed 
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in Fig. 10. Note that the mode shapes results obtained from the present method, Refs. 30 and 31 
are all the FE mole results for lack of experimental mode shapes. As can be seen from Fig. 10, the 
inaccuracy of the first and fourth mode shapes detected by the present CSD, [30] and [31] is small 
and reasonable. 

 
Fig. 6. Highway bridge Z24  

 
Fig. 7. FE model of bridge Z24: spring elements (boxes) and point mass elements (black dots) 

 
Fig. 8. Initial and updated bending  

stiffness distribution 

 
Fig. 9. Stabilization diagram using  

the present CSD 
 

 
a) Mode 1 

 
b) Mode 4 

Fig. 10. Bending mode shapes from the modal analysis: first and fourth mode 

5. Numerical simulations 

Numerical experiments have been conducted to further test and verify the CSD technique to 
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identify the modal parameters combined with the SADE method. It is expected that the proposed 
algorithms are more reliable in detecting the structural dynamic parameters. In this paper, we 
present two numerical examples. They are examples of a continuous beam and a cable-stayed 
bridge.  

5.1. Application in a continuous beam bridge 

The effectiveness of the methods proposed in this paper is verified by a three-span continuous 
beam example in this section. The finite element model is built using the finite element software, 
in which the entire beam is divided into 30 elements and 31 nodes, as shown in Fig. 11. The 
physical parameters of the beam are displayed in Table 4. 

Table 4. Physical parameters of continuous beam 
Parameter Value 

Length of the beam 60 m 
Depth of section 1.3 m 

Section area 0.928 m2  
Moment of inertia 0.179 m4 

Mass density 2600 kg/m3 
Elastic modulus 35 GPa 

The first five modal parameters are calculated by modal analysis for this model to enable a 
comparison with the identified results. It should be pointed out that only the first five modal 
parameters are selected as the identified objective even though there are more modes can be 
detected by the CSD technique combined with the SADE method. White noise excitations of 
3.071 seconds are added on nodes 5 and 16, as indicated by the arrows in Fig. 11(a). The vehicle 
load excitations move from the left end to the right end of the continuous beam within 
2.401 seconds shown in Fig. 11(b). 

 
a) Nodes 5 and 16 excited by white noise 

 
b) All nodes excited by a moving load 

Fig. 11. Finite element model with different excitations 

5.1.1. Continuous beam excited by white noise  

The white noise excitation can be used to simulate the ambient excitation. In this study, the 
sampling frequency is 1000 Hz, i.e., there are 3071 strain data to be extracted on each node during 
sampling time; at the same time, 307×131= 95201 strain data are prepared as the input data of the 
CDSSI.  

5.1.1.1. Traditional stabilization diagram  

The TSD can be regarded as a good way to identify the modal parameters, although it is not 
so automated. To enable a comparison with the CSD, the TSD is established as shown in  
Fig. 12(a). 

As a result, the TSD based on the CDSSI can precisely identify the first five frequencies and 
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mode shapes. Moreover, the first five poles can be identified as the physical modes because they 
are sufficiently long. However, the identification process requires the judgment of experts, which 
is the only flaw of the TSD. 

5.1.1.2. Clustering stabilization diagram  

The CSD based on the KFCM and SADE is applied to the analysis of this continuous beam, 
in which the frequency is the abscissa and the sixteenth column value in MAC matrix is the 
ordinate. After the determination of the number of cluster is ܿ = 12, the CSD combined with 
SADE is presented in Fig. 12(b). As shown in Fig. 12(b), after the twelfth mode is determined, 
which corresponds to the larger circle being removed, the objective modes of the first five orders 
can be judged as the physical modes automatically. In detail, the radii of all the compared circles 
are listed in Table 5.  

Note that while the above analysis has focused on white noise excitation, the reliability of this 
proposed method still should be examined for the case of more complex natural excitation with 
ambient noise. As a result, the following work was performed for a continuous beam excited by a 
vehicle load. 

Table 5. Radius results of all compared circles in Fig. 5(b) 
Clustering 

number 1 2 3 4 5 6 7 8 9 10 11 12 

Radius 0.0006 0.0002 0.0055 0.0000 0.0008 0.0203 0.0000 0.0001 0.0147 0.0186 0.0141 0.2865 
 

 
a)  

 
b) 

Fig. 12. Stabilization diagrams: a) TSD, b) CSD optimized by SADE. The criteria are 1 %  
for frequencies, 5 % for damping ratios, 2 % for mode shape vectors (MAC) 

5.1.2. Continuous beam excited by a moving load  

The vehicle load excitations are used here because they are closer to the actual situation of the 
natural ambient. However, the ambient noises are the main factors that affect the accuracy of the 
identified results in a practical project. The dynamic response data with noise ܵᇱ can be calculated 
by the following equation: ܵᇱ = ܵ + 	,ܵ×௦×rand(0,1)ߣ (8)

where ܵ is the measured value, ߣ௦ is the noise level and rand(0,1) is the Gaussian random number, 
the mean of which is zero and the variance is one. Two noise levels are considered, with ߣ௦ = 5	% 
and ߣ௦ = 10	%. The results of the CSD with the SADE are shown in Fig. 13 when the all of the 
data are divided into eight clusters.  
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a) ߣ௦ = 5 % 

 
b) ߣ௦ = 10 % 

Fig. 13. CSD with different noise levels 

5.1.3. Results of the parameter identification  

The modal parameters of the continuous beam can be extracted by the poles in the TSD 
(Fig. 12(a)) and the nearest data points from the clustering centers in the CSD with the SADE  
(Figs. 12(b) and 13). For the convenience of the comparative analysis, a summary frequency 
results calculated by the finite element model, identified as TSD and CSD, with the different 
excitations and noise levels are listed in Table 6. The error of the modal frequencies in TSD and 
CSD under the white noise excitation is less than 2.22 %, while the maximum value of the 
frequency error is only 0.28 % when the beam is excited by the moving load. Correspondingly, 
the first five strain mode shapes are shown in Fig. 14. When all of these results are considered 
together, we can conclude that the first five frequencies and mode shapes of the continuous beam 
can be identified accurately; of course, the CSD with SADE is better than TSD in terms of the 
performance of the automated process. In addition, the CSD can still detect the modal parameters 
precisely when the different noises are added into the measured data, which means the novel CSD 
using the KFCM and the SADE proposed in this study has the higher interference ability, accuracy 
and reliability performance. 

 
Fig. 14. Strain mode shapes, including the model, TSD, and CSD with different excitations and noise levels 
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Table 6. Comparative results of frequency with respect to different SD and model 

Modal 
order 

Model 
frequency 

(Hz) 

TSD CSD (White noise 
excitation) CSD (Moving load excitation) 

Frequency 
(Hz) 

Error 
(%) 

Frequency 
(Hz) 

Error 
(%) 

Frequency 
(Hz) 

௦ߣ) = 5 %) 

Error 
(%) 

Frequency 
(Hz)  

௦ߣ) = 10 %) 

Error 
(%) 

1 6.31 6.38 1.11 6.37 0.95 6.31 0 6.31 0 
2 8.09 8.27 2.22 8.27 2.22 8.09 0 8.09 0 
3 11.81 11.86 0.42 11.86 0.42 11.8 –0.08 11.8 –0.08 
4 25.08 25 –0.32 25 –0.32 25.03 –0.20 25.02 –0.24 
5 28.57 28.54 –0.11 28.54 –0.11 28.5 –0.25 28.49 –0.28 

5.2. Application in a cable-stayed bridge 

5.2.1. Parameter identification using proposed CSD and SADE 

The second numerical example considered is a cable-stayed bridge with backstays shown in 
Fig. 15. The finite element model is built by the finite element software in which the main girder, 
tower and cable are simulated by the elements of beam189, beam44 and link10, respectively.  

The girder is excited using vertical seismic waves from Tianjing that the length of time is 
19.12 seconds and sampling rate is 100 Hz for the vertical displacement. The response of 
displacement time history is computed using finite element analysis which is used for the input 
data of CDSSI combined with CSD and SADE. The number of clustering is selected as 15. The 
results of the stabilization diagrams are shown in Fig. 16 when the ordinates of the diagrams are 
chosen as the eighth column in MAC matrix, i.e. the data of the ܻ direction displacement are 
obtained from the crossed node between the eighth cable and main girder. 

 
Fig. 15. Cable-stayed bridge 

5.2.2. Results of the parameter identification  

The modal parameters of the cable-stayed bridge can be observed automatically from the 
stabilization diagrams (Fig. 16). Fig. 17 shows the results of the first six vertical mode shapes, 
which present a contrastive analysis between the finite element model and CSD proposed in this 
paper. Accordingly, the results for the frequencies are also shown in the figure. However, the 
errors of the first two mode shapes and frequencies are relatively larger than the last four ones. 
Speaking with numbers corresponding to the results of the finite element model, the errors of the 
first two frequencies identified are up to 10.44 % and 9.15 %, respectively, but the largest error in 
the last four frequencies is only 4.63 %. 
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Fig. 16. Stabilization diagram of CSD with SADE for ܷܻ displacement 

 
Fig. 17. The first six vertical mode shapes and frequencies 

6. Conclusions 

An improved clustering stabilization diagram combined with self-adaptive differential 
evolution is proposed for parameter identification in this paper. The TSD and the proposed CSD 
are all the powerful tool to remove the spurious modes from the numerous modes. The proposed 
CSD plotted by the frequency and MAC is more reliable than the other stabilization diagram 
consisting of the frequency and damping ratio and better than the TSD in terms of its automatic 
performance. In particular, the presented SADE algorithm played a crucial role in improving the 
success rate of the CSD to identify the parameters by optimizing the initial clustering centers. 
Benchmark test of bridge Z24 and numerical simulations of a continuous beam under different 
excitations and a cable-stayed bridge verified that the proposed method is effective and reliable in 
parameter identification in civil engineering structures. Future studies will focus on the application 
of the proposed method in more complex bridges with measured data. 
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