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Abstract. In this paper, an algorithm is proposed for simultaneous excitation and parameter 
identification for non-linear system in state space. The algorithm is based on the sequential 
application of extended Kalman estimator for non-linear structural parameters and the weighted 
least squares estimation for unknown excitations. The state and parameter are reformed into the 
augmented state, and the state space equations are non-linear associated with the augmented state. 
With the first-order Taylor expansion for nonlinear system and approximately linear 
minimum-variance unbiased estimation, a recursive algorithm is derived where the identification 
of the augmented state and the excitation are interconnected. Two numerical examples which 
identify uncertain parameters of a 3-DOF Duffing-type system and a four-story hysteretic 
shear-beam building subject to unknown random excitation respectively, are conducted to 
demonstrate the effectiveness of the proposed approach. 
Keywords: parameter identification, excitation identification, extended Kalman filter, non-linear 
system. 

1. Introduction 

Parameter identification is an important research topic in structural dynamics, which can be 
easily applied for structural damage identification, model updating and health monitoring. Various 
analysis approaches for parameter identification have been presented in the literatures [1, 2]. The 
popularity of the currently available parameter identification approaches is suitable for linear 
structural systems. However, structural non-linearity widely exists in engineering structures. For 
example, in civil engineering filed, when damage occurs in concrete structures, the open and close 
of cracks under dynamic excitation are typical non-linear process which leads to the hysteretic 
performance of the structures. Therefore, it is necessary to develop the novel approaches of 
parameter identification for non-linear structural systems. Masri [3-5] is among the pioneers for 
the developments of various methods for the identification of non-linear structural systems from 
measured vibration data. Additionally, various filter algorithms, such as extended Kalman filter 
(EKF) [6-11], ܪஶ filter [12], unscented Kalman filter (UKF) [13], Monte Carlo filter [14] and 
particle filter (PF) [15, 16], have been also developed for parameter identification for non-linear 
structural systems.  

In the filter algorithms above, all the external excitations should be available from sensor 
measurements. Unfortunately, there is no straightforward way to measure the excitations on a 
structure because the introduction of dedicated force cells requires alteration to the structure to 
locate the sensor in the force path, which is unwanted and unpractical. And also, sensors may not 
be installed in the health monitoring system to measure all the excitations, such as earthquake. 
Therefore, it is essential to develop the algorithms for simultaneous excitation and parameter 
identification. Yang et al. [17] proposed a modified EKF under unknown excitation inputs, 
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referred to as EKF-UI, for the identification of structural parameters as well as the unknown 
excitations. Lei et al. [18] deduced the EKF-UI algorithm again by the least-squares estimation, 
and pointed that the analytical recursive solutions by the original EKF-UI were obtained by 
relatively complex mathematical derivations. Lei et al. [19] also adopted the simplified EKF-UI 
algorithm for the identification of non-linear structural parameter. But in the simplified EKF-UI 
algorithm, the prior probability density functions (PDFs) of states at ݐ + 1 time are taken as the 
posterior PDFs of states at ݐ + 1 time, which may cause the confusion of concepts in Bayesian 
framework. 

In 2007, Gillijns and De Moor [20] developed a recursive optimal filter of joint state/input 
estimation for linear systems with direct transmission, which was originally proposed for optimal 
control applications. The identified input and state by this filter are optimal in a minimum-variance 
unbiased sense. In this paper, a novel method of simultaneous excitation and parameter 
identification based on the filter proposed by Gillijn and De Moor (GDF) for non-linear structural 
systems is developed. The standard GDF algorithm is only suitable for joint state/input 
identification for linear systems. In this method, it is extended for non-linear systems by the 
linearization idea of EKF. The uncertain parameters and the states are considered as the augmented 
states to be identified. Thus, the novel state transmission and measurement equations are 
non-linear, which are linearized by the first-order Taylor expansions. The proposed extended GDF 
(EGDF) has the same structure of the standard GDF algorithm, including three steps: input 
identification, measurement update and time update. The main difference between them is the 
sensitivity matrices of the non-linear state-space equations.  

This paper proceeds as follows. Section 2 presents the standard GDF algorithm for joint 
state/input identification. In Section 3, the non-linear identification model of the coupled 
state/input/parameter is firstly built, and then the proposed EGDF method is derived in detail. In 
Section 4, two numerical examples are conducted to demonstrate the effectiveness of the EGDF 
method. Finally, the conclusion is drawn based on the current study. 

2. Joint state/input identification 

2.1. Discrete-time state-space model of structural dynamics 

The general equation of motion of a damped structure with ݊ DOFs can be written as: ܘۻሷ (ݐ) + ሶܘ۱ (ݐ) + (ݐ)ܘ۹ = ۰௨(1) ,(ݐ)ܝ

where ۻ,  ۱  and ۹ ∈ ℝ௡×௡  are the mass, damping and stiffness matrices of the structure, 
respectively; ܘሷ (ݐ) ሶܘ , (ݐ) (ݐ)ܘ , ∈ ℝ௡  are, respectively, the nodal acceleration, velocity and 
displacement vectors of the structure; (ݐ)ܝ ∈ ℝ௠  is the force vector and ۰௨ ∈ ℝ௡×௠  is the 
influence matrix associated with (ݐ)ܝ.  

The second-order equation of motion Eq. (1) can be transformed into a first-order 
continuous-time state equation as: ܠሶ (ݐ) = (ݐ)ܠ௖ۯ + ۰௖(2) ,(ݐ)ܝ

where (ݐ)ܠ ∈ ℝଶ௡×ଶ௡  is the state vector, and the system matrices together with (ݐ)ݔ  are  
defined as: ۯ௖ = ൤ [૙] ଵ۹ିۻ−۷ ଵ۱൨ିۻ− , ۰௖ = ൤ [૙]ିۻଵ۰௨൨ , (ݐ)ܠ = ൤ܘ(ݐ)ܘሶ ൨. (3)(ݐ)

Assuming that only s acceleration signals are measured (i.e. (ݐ)ݕ ∈ ℝ௦), the measurement 
equation can be written as the following state-space form: 
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(ݐ)ܡ = (ݐ)ܠ۶ + (4) .(ݐ)ܝ۲

With the output influence matrix ۶ ∈ ℝ௦×௡  and direct transmission matrix ۲ ∈ ℝ௦×௠  
defined as: ۶ = [−۶଴ିۻଵ۹ −۶଴ିۻଵܥ], ۲ = [۶଴ିۻଵ۰௨], (5)

where the ۶଴ is the selection matrix of appropriate dimension for accelerations and composed by 
zeros and ones. 

Let the symbol Δݐ denote the time step size, thus the continuous-time state-space model of 
Eqs. (2) and (4) can be transformed into the following discrete-time form using a sampling rate  
of 1/Δܠ :ݐ௞ାଵ = ௞ܠۯ + ௞ܡ௞, (6)ܝ۰ = ௞ܠ۶ + ௞, (7)ܝ۲

where: ܠ௞ = ௞ܡ    ,(Δt݇)ܠ = ,(Δt݇)ܡ ݇ = 1, 2, ۯ(8) ,3 = ,೎୼௧ۯ݁ ۰ = ೎୼௧ۯ݁) − ௖ିۯ(۷ ଵ۰௖, (9)

2.2. The GDF algorithm 

Considering the system and measurement noise, the linear structural system can be  
rewritten as: ܠ௞ାଵ = ௞ܠۯ + ௞ܝ۰ + ௞ܟ = ௞݂(ܠ௞, (௞ݑ + ௞ܡ௞, (10)ܟ = ௞ܠ۶ + ௞ܝ۲ + ௞ܞ = ℎ௞(ܠ௞, (௞ݑ + ௞. (11)ܞ

The system noise vector ܓܟ ∈ ℝ௡ and measurement noise vector ܞ௞ ∈ ℝ௠ are assumed to be 
mutually uncorrelated, zero-mean, white random signal with known covariance matrices,  ۵௞ = ௟்ܟ௞ܟ}ܧ } and ܀௞ = ௟்ܞ௞ܞ}ܧ } respectively (ܧ represents the expectation value). Results are 
easily generalized to the case where ܓܟ and ܞ௞ are correlated [21]. If the inputs ܝ௞ in Eqs. (10) 
and (11) are unknown, then the two equations represent the linear dynamic system with direct 
feedthrough. In the field of system control, Gillijns and De Moor proposed an optimal recursive 
filter of the direct feedthrough case for joint input/state identification [20]. In this filter, a state 
estimate ܠ௞|௟ is defined as an estimate of ܠ௞ given {ܡ଴, ,ଵܡ … , ௞|௟௫۾ ௟} and its error covariance matrixܡ  as ܠ)]ܧ௞ − ௞ܠ)(௞|௟ܠ − ଴|ିଵܠ ௞|௟)்]. An initial unbiased state estimateܠ  and its covariance 
matrix ۾଴|ିଵ௫  are assumed known. 

The GDF algorithm computes the unknown input and state in a recursive procedure which 
includes three steps: the input identification, the measurement update and the time update. The 
GDF algorithm is listed in Table 1. 

In Ref. [22], the GDF is applied in linear structural dynamics for joint input/response 
identification successfully. However, it is not suitable for non-linear dynamic systems. In 
Section 3, the GDF method is extended for non-linear dynamic system to solve the problem of 
coupled state/input/parameter identification. 

3. Coupled state/input/parameter identification 

In this section, uncertain structure with unknown structural parameters is considered to identify 
both state and input. Therefore, a novel difficult problem of coupled state/input/parameter 
identification is presented for more common engineering applications. 
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Table 1. The algorithm of GDF 
1. Initialization of ܠ଴|ିଵ, ۾଴|ିଵ௫  
2. Input identification ܀෩ ௞ = ௞|௞ିଵ௫۾۶ ۶ ் + ௞ ۸௞܀ = ෩܀۲்) ௞ିଵ۲)ିଵ۲்܀෩ ௞ିଵ ܝෝ௞ = ۸௞(ܡ௞ − ௞௨۾ (௞|௞ିଵܠ۶ = ෩܀۲்) ௞ିଵ۲)ିଵ 
3. Measurement update ۹௞ = ௞|௞ିଵ௫۾ ෩܀۶் ௞ିଵ ܠ௞|௞ = ௞|௞ିଵܠ + ۹௞(ܡ௞ − ௞|௞ିଵܠ۶ − ௞|௞௫۾ (ෝ௞ܝ۲ = ௞|௞ିଵ௫۾ − ۹௞(܀෩ ௞ − ௞௫௨۾ ௞௨۲்)۹௞்۾۲ = ்(௞௨௫۾) = −۹௞۲۾௞௨ 
4. Time update ܠ௞ାଵ|௞ = ௞|௞ܠۯ + ௞ାଵ|௞௫۾ ෝ௞ܝ۰ = ۯ] ۰] ቈ۾௞|௞௫ ௞௨௫۾௞௫௨۾ ௞௨۾ ቉ ቂ۰்்ۯቃ + ۵௞ 

Notes: where ܝෝ௞ is the estimate of input ܝ௞; ۾௞|௞௫ = ෤௞|௞்ܠ෤௞|௞ܠ]ܧ ௞௨۾ ,[ = ்(௞௫௨۾) ,[෥௞்ܝ෥௞ܝ]ܧ = ௞௨௫۾ = ෤௞|௞்ܠ෥௞ܝ]ܧ ], and ۾௞|௞ିଵ௫ = ෤௞|௞ܠ with [෤்௞|௞ିଵܠ෤௞|௞ିଵܠ]ܧ = ௞ܠ − ෥௞ܝ  ௞|௞ andܠ = ௞ܝ −  .ෝ௞ܝ

3.1. Non-linear identification model of the coupled state/input/parameter identification 

Assuming in dynamics Eq. (1) that only ۹ and ۱ contain the uncertain parameters ߙ to be 
identified, the original state vector ܠ can be extended to be the augmented state vector as: (ݐ)ݖ = ቂߙ(ݐ)ܠ ቃ, (12)

where ߙ = ଵߙ] ଶߙ ⋯ ்[ఈߙ ∈ ℝఈ  is the parameter vector. Therefore, the augmented state 
transmission and measurement equations can be obtained as: 

(ݐ)ሶݖ = ቂܠሶ ሶ܉(ݐ) ቃ = ቎ܘሶ ሷܘ(ݐ) [૙](ݐ) ቏ = ቎ ሶܘ (ݐ)ܘଵ۹ିۻ−(ݐ) − ሶܘଵ۱ିۻ (ݐ) + [0](ݐ)ܝଵ۰௨ିۻ ቏ ≡ ݂௖൫(ݐ)ܢ, (ݐ)ܡ൯, (13)(ݐ)ܝ = (ݐ)ܠ۶ + (ݐ)ܝ۲ ≡ ℎ൫(ݐ)ܢ൯ + (14) .(ݐ)ܝ۲

The parameters are assumed to be constant, i.e. ߙሶ = [૙]. 
The above continuous-time state-space equations can be transformed into the following  

form as: ܢ௞ାଵ = ௞݂(ܢ௞, (௞ܝ + ,௞ܟ ݇ = 1,2 … , ௞ܡ(15) ,ܶ = ℎ௞(ܢ௞) + ۲௞ܝ௞ + ,௞ܞ ݇ = 1,2, … , ܶ. (16)

Unlike Eqs. (10) and (11), the functions ݂  and ℎ  are both non-linear. The standard GDF 
method cannot be adopted to handle this case of non-linear identification. In the research field of 
system control, the standard KF was presented for identifying the state of linear dynamic systems. 
The EKF algorithm was then developed for identifying the state of non-linear dynamic systems 
by continually updating a linearization around the previous state estimate, starting with an initial 
guess, which is a non-linear variation on the standard KF based on the first-order Taylor 
approximation. In the following section, the linearization idea of the EKF method is adopted to 
extend the standard GDF method for non-linear dynamic systems. 
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3.2. The extended GDF algorithm 

In this coupled state/input/parameter identification problem, the augmented state ܢ௞ (including 
state and uncertain parameters) and identified forces ܝ௞ are both unknown. Therefore, we have 
the first-order Taylor series expansions for the two non-linear system matrices: 

௞݂(ܢ௞, (௞ܝ = ௞݂൫ܧ(ܢ௞), ൯(௞ܝ)ܧ + ∇௭ ௞݂ ⋅ ൫ܢ௞ − ൯(௞ܢ)ܧ + ܝ∇ ௞݂ ⋅ ൫ܝ௞ − ൯(௞ܝ)ܧ + (௞ܢ)ℎ௞(17) ,ܱܶܪ = ℎ௞൫ܧ(ܢ௞)൯ + ∇௭ℎ௞ ⋅ ൫ܢ௞ − ൯(௞ܢ)ܧ + (18) ,ܱܶܪ

where ∇௭ ௞݂, ∇௨ ௞݂ and ∇௭ℎ௞ are the sensitivity matrices, and ܱܶܪ stands for the high-order terms. 
Using the Taylor expansions, the Eqs. (17) and (18) can be approximated in the following 

linear form: ܢ௞ = ௞݂ିଵ(ܢ௞ିଵ, (௞ିଵܝ + ௞ିଵܟ = ௞݂ିଵ(ܧ(ܢ௞ିଵ), ܢ∇+     ((௞ିଵܝ)ܧ ௞݂ିଵ ⋅ ௞ିଵܢ) − ((௞ିଵݖ)ܧ + ܝ∇ ௞݂ିଵ ⋅ ௞ିଵܝ) − ((௞ିଵܝ)ܧ + ௞ିଵܟ + ≈     ܱܶܪ ܢ∇ ௞݂ିଵ ⋅ ௞ିଵܢ + ܝ∇ ௞݂ିଵ ⋅ ௞ିଵܝ + ௞݂ିଵ(ܧ(ܢ௞ିଵ), ((௞ିଵܝ)ܧ − ܢ∇ ௞݂ିଵ ⋅ ௨∇−     (௞ିଵܢ)ܧ ௞݂ିଵ ⋅ (௞ିଵݑ)ܧ + ௞ିଵݓ = ,௞௟௜௡ݖ  (19)

௞ܡ = ℎ௞(ܧ(ܢ௞)) + ℎ௞ܢ∇ ⋅ ௞ܢ) − ((௞ܢ)ܧ + ܱܶܪ + ۲௞ܝ௞ + ≈      ௞ܞ ℎ௞ܢ∇ ⋅ ௞ܢ + ۲௞ܝ௞ + ℎ௞(ܧ(ܢ௞)) − ℎ௞ܢ∇ ⋅ ((௞ܢ)ܧ + ௞ܞ = ௞௟௜௡. (20)ܡ

Then, the prior expectation of the augmented state vector ܢ௞  has the approximately linear  
form as: ܢ௞|௞ିଵ ≡ (௞ିଵ܇|௞ܢ)ܧ ≈ )ܧ ௞݂ିଵ(ܧ(ܢ௞ିଵ), ((௞ିଵܝ)ܧ + ܢ∇ ௞݂ିଵ ⋅ ௞ିଵܢ) − ܝ∇+      ((௞ିଵܢ)ܧ ௞݂ିଵ ⋅ ൫ܝ௞ିଵ − ൯(௞ିଵܝ)ܧ + (௞ିଵ܇|௞ିଵܟ = ௞݂ିଵ൫ܢ௞ିଵ|௞ିଵ, ෝ௞ିଵ൯ܝ = ௞|௞ିଵ௟௜௡ܢ . (21)

Using the three approximately linear Eqs. (19)-(21), the proposed extended GDF (EGDF) 
algorithm can be derived referring to Ref. [20]. The EGDF algorithm is shown in Table 2. With 
the algorithm, the augmented state ܢ and the excitation ܝ can be simultaneously identified. 

Table 2. The algorithm of EGDF 
1. Initialization of ܢ଴|ିଵ, ۾଴|ିଵ௭  
2. Input identification ܀෩ ௞ = ∇௭ℎ௞ ⋅ ௞|௞ିଵ௭۾ ⋅ (∇௭ℎ௞)் + ௞ ۸௞܀ = (۲௞்܀෩ ௞ିଵ۲௞)ିଵ۲௞்܀෩ ௞ିଵ ܝෝ௞ = ۸௞(ܡ௞ − ℎ௞(ܢ௞|௞ିଵ)) ۾௞௨ = (۲௞்܀෩ ௞ିଵ۲௞)ିଵ 
3. Measurement update ۹௞ = ௞|௞ିଵ௭۾ (∇௭ℎ௞)்܀෩ ௞ିଵ ܢ௞|௞ = ௞|௞ିଵܢ + ۹௞(ܡ௞ − ℎ௞(ݖ௞|௞ିଵ) − ۲௞ܝෝ௞) ۾௞|௞௭ = ௞|௞ିଵ௭۾ − ۹௞൫܀෩ ௞ − ۲௞۾௞௨۲௞்൯۹௞் ۾௞௭௨ = ்(௞௨௭۾) = −۹௞۲௞۾௞௨ 
4. Time update ܢ௞ାଵ|௞ = ௞݂(ܢ௞|௞, ௞ାଵ|௞௭۾ (ෝ௞ܝ ≡ ௞ାଵ|௞൯்ݖ௞ାଵ|௞̃ݖ൫̃ܧ = [∇௭ ௞݂ ∇௨ ௞݂] ቈ۾௞|௞௭ ௞௨௭۾௞௭௨۾ ௞௨۾ ቉ ቈ(∇௭ ௞݂)்(∇௨ ௞݂)்቉ + ۵௞ 

Comparing the EGDF algorithm with the standard GDF algorithm, it is found that the two 
algorithms are very similar, and the only differences are the three sensitivity matrices of ∇ܢ ௞݂, ∇ܝ ௞݂ and ∇ܢℎ௞. The three matrices ∇ܢ ௞݂, ∇ܝ ௞݂ and ∇ܢℎ௞ in EGDF have the same functions as the 
matrices ۯ௞, ۰௞ and ۶௞ in standard GDF respectively. 
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The three important sensitivity matrices ∇ܢ ௞݂, ∇ܝ ௞݂ and ∇ܢℎ௞ are derived one by one in the 
following description. Using the first-order Taylor series expansion, Eq. (13) can be rewritten as: ܢሶ(ݐ) = (ݐ)ܢ௙ۯ + ݂௖൫(ݐ)ܢ, ൯(ݐ)ܝ − (22) ,(ݐ)ܢ௙ۯ

where ܣ௙ is a gradient matrix with the value as: 

௙ۯ = ߲݂௖߲ܢ ฬܢୀܢೖ|ೖ 

   = ێێۏ 
ۍ [૙] ۷ [૙] ⋯ [૙]−ିۻଵ۹ ଵ۱ିۻ− ଵିۻ− ଵߙ۹߲߲ ௞ܘ − ଵିۻ ଵߙ߲ܥ߲ ሶܘ ௞ ⋯ ଵିۻ− ఈߙ۹߲߲ ௞ܘ − ଵିۻ ఈߙ۱߲߲ ሶܘ ௞[૙] [૙] [૙] ⋯ [૙] ۑۑے

(23) .ې

The quantity ݁ିۯ೑௧ is multiplied on both sides of Eq. (22) and integrating the new equation in 
time interval [ݐ଴ ሶࢠ೑௧࡭ି݁ :[ݐ (ݐ) = (ݐ)ࢠ௙࡭೑௧ۯି݁ + ೑௧࡭ି݁ ቀ݂௖൫(ݐ)ࢠ, ൯(ݐ)࢛ − ቁ, (24)න(ݐ)ܢ௙ۯ (߬)ሶܢ೑ఛ൫ۯି݁ − ൯݀߬௧(߬)ܢ௙ۯ

௧బ = න ,(ݐ)ܢ)೑௧൫݂௖ۯି݁ ((ݐ)ܝ − ൯݀߬௧(ݐ)ܢ௙ۯ
௧బ (ݐ)ܢ(25) , = ೑(௧ି௧బ)ۯ݁(଴ݐ)ܢ + න ೑(௧ିఛ)ۯ݁ ቀ݂௖൫ܢ(߬), ൯(߬)ܝ − ቁ(߬)ܢ௙ۯ ݀߬௧

௧బ . (26)

According to Eq. (26), the discrete-time state transmission equation is obtained: ܢ௞ାଵ = ܢ∇ ௞݂ ⋅ ௞ܢ + ഥ, (27)܃

where: ∇ܢ ௞݂ = ܢ∇ ௞݂|ܢୀܢೖ|ೖ = ೑∆௧ۯ݁ = ۷ + ݐ∆௙ۯ + !ଶ/2(ݐ∆௙ۯ) + ݐ∆)    ,⋯ = ௞ାଵݐ − ഥ܃௞), (28)ݐ = න ೑(௧ೖశభିఛ)௧ೖశభ௧ೖۯ݁ ൫݂௖(ܢ௞, (௞ܝ − ௞൯݀߬. (29)ܢ௙ۯ

For the derivation of the matrix ∇ܝ ௞݂, Eq. (13) can be rewritten in another form as: 

(ݐ)ሶܢ = ቎ ሶܘ (ݐ)ܘଵ۹ିۻ−(ݐ) − ሶܘଵ۱ିۻ [૙](ݐ) ቏ + ቎ [૙]ିۻଵ۰௨(ݐ)ܝ[૙] ቏ = ݂஺൫(ݐ)ܢ൯ + ۰௖(30) ,(ݐ)ܝ

where ݂((ݐ)ܢ)ۯ = ቎ ሶܘ (ݐ)ܘଵ۹ିۻ−(ݐ) − ሶܘଵ۱ିۻ [૙](ݐ) ቏  and ۰௖ = ቎ [૙]ିۻଵ۰௨(ݐ)ܝ[૙] ቏ . Eq. (30) can be 

rearranged as: ܢሶ(ݐ) = (ݐ)ܢ௙ۯ + ቀ݂ۯ൫(ݐ)ܢ൯ − ቁ(ݐ)ܢ௙ۯ + ۰௖(31) .(ݐ)ܝ

The following derivation procedure is the same as the procedure of the matrix ∇ܢ ௞݂ . The 
quantity ݁ିۯ೑௧ is multiplied on both sides of Eq. (31) and integrating the new equation in time 
interval [ݐ଴  :[ݐ



2581. SIMULTANEOUS EXCITATION AND PARAMETER IDENTIFICATION FOR NON-LINEAR STRUCTURAL SYSTEMS.  
ZHIMIN WAN, TING WANG, QIBAI HUANG, WEIGUANG ZHENG, FENG GU 

3974 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. SEP 2017, VOL. 19, ISSUE 6. ISSN 1392-8716  

(ݐ)ܢ = ೑(௧ି௧బ)ۯ݁(଴ݐ)ܢ + න ೑(௧ି௧బ)ۯ݁ ቀ݂ۯ൫(ݐ)ܢ൯ − (ݐ)ܢ௙ۯ + ۰௖(ݐ)ܝቁ௧
௧బ ݀߬. (32)

Supposing that the external force (ݐ)ܝ in time step of integration is constant, and discretizing 
the Eq. (32), we can obtain: ∇ܝ ௞݂ = ೖ|ೖܢୀܢ|݂ܝ∇ = ೑୼௧ۯ݁) − ଵ۰௖. (33)ି(௙ۯ)(ܫ

Comparing with the derivation of matrices ∇ܢ ௞݂  and ∇ܝ ௞݂ , the sensitivity matrix of 
measurement ∇ܢℎ௞ is easy to compute, and that is: 

ℎ௞ܢ∇ = ൤߲ℎ߲ܘ ߲ℎ߲ܘሶ ߲ℎ߲હ൨ฬܢୀܢೖ|ೖషభ    = ൤−۶଴ିۻଵ۹, −۶଴ିۻଵ۱, −۶଴ିۻଵ ߙ۹߲߲ (݇)ܘ − ۶଴ିۻଵ ߙ۱߲߲ ሶܘ (݇)൨ . (34)

The idea of the EGDF algorithm is excited by the idea of the EKF algorithm, which is to 
linearize the non-linear state transmission Eq. (15) and measurement Eq. (16) with the first-order 
Taylor expansion to make the standard GDF algorithm suitable for identifying the augmented state 
and unknown input of the approximate linear dynamic system. It is obvious that the EGDF 
algorithm has a stricter mathematics derivation and observes the definitions of prior PDF 
(probability density function) and posterior PDF in Bayesian framework compared with the 
algorithm proposed by Lei et al. [19].  

4. Numerical studies 

In this section, two numerical examples are considered to evaluate the performance of the 
proposed EGDF method. The first example deals with a 3-DOF non-linear elastic structure, and 
the other one is to identify the non-linear parameters of a 4-DOF hysteretic structure. 

4.1. Example 1: 3-DOF non-linear elastic structure  

Consider a three-story non-linear elastic Duffing-type shear-beam building subject to 
unmeasured random excitation ݑଵ(ݐ). The equations of motion are given by: 

൥݉ଵ 0 0݉ଶ ݉ଶ 0݉ଷ ݉ଷ ݉ଷ൩ ቐ݌ሷଵ(ݐ)݌ሷଶ(ݐ)݌ሷଷ(ݐ)ቑ + ൥ܿଵ −ܿଶ 00 ܿଶ −ܿଷ0 0 ܿଷ ൩ ቐ݌ሶଵ(ݐ)݌ሶଶ(ݐ)݌ሶଷ(ݐ)ቑ + ൥݇ଵଵ −݇ଶଵ 00 ݇ଶଵ −݇ଷଵ0 0 ݇ଷଵ ൩ ቐ݌ଵ(ݐ)݌ଶ(ݐ)݌ଷ(ݐ)ቑ
   + ൥݇ଵଷ −݇ଶଷ 00 ݇ଶଷ −݇ଷଷ0 0 ݇ଷଷ ൩ ቐ݌ଵଷ(ݐ)݌ଶଷ(ݐ)݌ଷଷ(ݐ)ቑ = ൝ݑଵ(ݐ)00 ൡ .  (35)

In which ݌௜  is the inter-story drift between ݅ th and (݅ − 1) th stories ( ݅ =  1, 2, 3),  ݉ଵ = ݉ଶ = ݉ଷ =  1000 kg, ܿଵ = ܿଶ = ܿଷ =  0.6 kNs/m, ݇ଵଵ =  120 kN/m, ݇ଶଵ =  120 kN/m, ݇ଷଵ = 60 kN/m, ݇ଵଷ = 200 kN/m, ݇ଶଷ = 200 kN/m and ݇ଷଷ = –50 kN/m. for the elastic structure 
with ݇ଵଷ = ݇ଶଷ = ݇ଷଷ =  0, the natural frequencies are ଵ݂ =  0.73 Hz, ଶ݂ =  1.74 Hz and  ଷ݂ = 2.93 Hz with the corresponding damping ratios ߞଵ ଶߞ ,% 1.42 = = 4.56 % and ߞଷ = 5.08 %. 

Assuming that four parameters including ܿଶ, ܿଷ, ݇ଶଵ and ݇ଷଵ are unknown to be determined, 
their initial values are 0.3 kN s/m, 0.9 kN s/m, 100 kN/m and 80 kN/m, respectively. Thus, the 
augmented state vector is {݌ଵ, ,ଶ݌ ,ଷ݌ ,ሶଵ݌ ,ሶଶ݌ ,ሶଷ݌ ܿଶ, ܿଷ, ݇ଶଵ, ݇ଷଵ}் . Two signals are measured for 
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identification, which are the accelerations of ݌ሷଵ and ݌ሷଶ. Also 3 % environment noise is added to 
the measured signals. Based on the proposed EGDF algorithm, the unknown random excitation, 
displacement, velocity and the unknown parameters are all identified. First, the identified 
excitation is plotted in Fig. 1.  

 
Fig. 1. The actual and identified results  

of random force ݑଵ 

 
Fig. 2. Zoom-in view  

of a segment (2-2.4 s) of Fig. 1 
 

 
a) 

 
b) 

Fig. 3. a) The theoretical and identified displacement at the 2nd floor,  
b) the theoretical and identified velocity at the 2nd floor 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 4. a) The actual and identified parameter value of ܿଶ, b) the actual and identified parameter value of ܿଷ, 
c) the actual and identified parameter value of ݇ଶଵ, d) The actual and identified parameter value of ݇ଷଵ 
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And to make a clearer comparison, the segment history of the actual and identified excitations 
from 2 s-2.4 s is also shown in Fig. 2. Then, the identified displacement and velocity responses at 
the 2nd floor are compared with their corresponding theoretical values as shown in Fig. 3. From 
Fig. 1 to Fig. 3, one can know that the identified force and structural state are both accurate. Also, 
the four identified parameters are plotted in Fig. 4. At the beginning of the identified procedure, 
the identified parameter values have the strong oscillatory, and then are quickly convergent to the 
neighborhoods of their corresponding actual values. From the above comparisons, it is clear that 
the proposed EGDF algorithm has the ability for simultaneous excitation and parameter 
identification for the non-linear Duffing-type system. 

4.2. Example 2: 4-DOF hysteretic structure with time-varying parameters 

The other numerical example is to identify the hysteretic parameters of a four-story hysteretic 
shear-beam building subject to unmeasured excitation on the top floor of the building, as shown 
by Fig. 5.  

 
Fig. 5. A hysteric shear-frame building under unknown excitation 

The equations of motion are given as: ܘۻሷ (ݐ) + ሶܘ۱ (ݐ) + (ݐ)ܚ۹ = ۰௨(36) ,(ݐ)ܝ

where (ݐ)ܚ is the vector of hysteretic force with ݎ௜(ݐ) (݅ = 1, 2,…, 4) being the ݅th floor hysteretic 
restoring force and is herein modeled by the Bouc-Wen non-linear differential equation, which 
can be written as: ݎሶ௜ = ሶ௜݌)௜ߠ − (ሶ௜ିଵ݌ − ሶ௜݌|௜ߚ − ௜|ఈ೔ିଵݎ||ሶ௜ିଵ݌ − ሶ௜݌)௜ߛ − ௜|ఈ೔, (37)ݎ|(ሶ௜ିଵ݌

where ߠ௜, ߚ௜, ߛ௜ and ߙ௜ are the Bouc-Wen hysteretic parameters. The hysteretic force is hereditary, 
depending on the past history of deformation, and its description is very complicated. Thus, the 
structure is non-linear. Structural hysteretic performance can be used as the indicator of the 
development of structural damage under dynamic excitation. Therefore, structure damage can be 
detected based on the identification of hysteretic parameters. 

The following parameters are used in the example: mass of each of each floor  ݉ଵ = ݉ଶ = ݉ଷ = ݉ସ = 500 kg; each story stiffness ݇ଵ = ݇ଶ = ݇ଷ = ݇ସ = 24 kN/m; each story 
damping coefficients ܿଵ = ܿଶ = ܿଷ = ܿସ = 0.1 kNs/m; hysteretic parameters are time-varying, 
and have the relations as ߠଵ = ଶߠ = ଷߠ = ,ସߠ ଵߚ  = ଶߚ = ଷߚ = ,ସߚ ଵߛ  = ଶߛ = ଷߛ = ଵߙ  ,ସߛ = ଶߙ = ଷߙ =  .ସ. The external excitation on the 4th floor is assumed to be a white noise forceߙ
The response time histories of the non-linear structure are calculated by the Runge-Kutta method. 
Three acceleration responses at the 1st, 3rd and 4th floors are assumed to be measured. The 
influence of measurement noise on identification is considered by superimposition of noise 
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process with the computed response quantities. In this example, 3 % RMS noise are adopted. The 
external excitation applied on the 4th floor is assumed to be unknown for identification. 

In the EGDF algorithm, the unknown quantities to be identified are the augmented state vector ܢ = ,ܘ} ሶܘ , ,ܚ ,ߠ ,ߚ ,ߛ  The sampling time interval is .(ݐ)ݑ and the unmeasured external excitation {ߙ
0.5 s. Based on the algorithm, the unmeasured excitation, displacement, velocity, hysteretic forces 
and hysteretic parameters can be identified. Fig. 6 shows the curves of the actual and identified 
excitations, and Fig. 7 is the segment view of Fig. 6 from 0 s to 40 s, which is to make a clearer 
comparison. The identified structural state of the 2nd floor is plotted in Fig. 8 compared with the 
responding theoretical value. The identified velocity response is very accurate, and the identified 
displacement response is also accurate with a minor error. The identified hysteretic force between 
3rd and 4th floor is plotted in Fig. 9. The identified error occurs mainly due to the error of the 
identified displacement. The identified time-varying non-linear parameters are shown in Fig. 10. 
The dashed lines marked in red represent the up and bottom boundaries of the identified 
parameters. From all the above figures, it demonstrates that the proposed EGDF approach is 
capable of simultaneous excitation and parameter identification for non-linear Bouc-Wen 
hysteretic systems.  

 
Fig. 6. The actual and identified results  

of random force (ݐ)ݑ 

 
Fig. 7. Zoom-in view  

of a segment (0-40 s) of Fig. 6 
 

 
a) 

 
b) 

Fig. 8. a) The theoretical and identified displacement of the vertical direction at the 2nd floor,  
b) the theoretical and identified velocity of the vertical direction at the 2nd floor 

 
Fig. 9. The theoretical and identified hysteretic force between the 3rd and 4th floors 
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a) 

 
b) 

 
c) 

 
d) 

Fig. 10. The actual and identified hysteretic parameters 

Zhimin Wan extended the algorithm of the traditional GDF method. Ting Wang studied the 
algorithm of the the traditional GDF method. Qibai Huang provided the improved idea of the 
proposed method. Weiguang Zheng studied the extended EKF algorithm. Feng Gu helps to check 
the English. 

5. Conclusions 

In this paper, an algorithm is proposed for simultaneous excitation and parameter identification 
of non-linear structural systems. The approach is motivated by the linearization idea of EKF 
algorithm, and it is the extension version of the GDF algorithm for non-linear structural systems. 
The structural states and uncertain parameters are combined as the so-called augmented states. 
The original state transmission and measurement equations are both transformed into the 
non-linear equations due to the augmented states. The first-order Taylor expansion is adopted to 
linearize the non-linear system. With the linearization values of the actual and prior of augmented 
states, the EGDF method is derived similar to the GDF method. The only differences are the 
sensitivity matrices of the non-linear state transmission and measurement functions to the 
augmented states and forces. Numerical examples of two typical non-linear systems, including a 
three-story elastic Duffing-type shear-beam building and a four-story hysteretic shear-beam 
building, are conducted to identify unknown parameters and excitation, and the results 
demonstrate the effectiveness of the approach.  

Additionally, it should be noted that the proposed EGDF algorithm is not applied for strong 
non-linear structures, such as Lorenz chaotic structures. This is because EKF approximates 
through the first-order linearization of both the non-linear state transmission and observation 
equations by Taylor series expansion. For strong non-linear structural systems, the unscented 
Kalman filter (UKF) or particle filter (PF) may be used for simultaneous excitation and parameter 
identification, which is our future work. 

Acknowledgements 

This work was supported by the National Natural Science Foundation of China (No. 51575201 



2581. SIMULTANEOUS EXCITATION AND PARAMETER IDENTIFICATION FOR NON-LINEAR STRUCTURAL SYSTEMS.  
ZHIMIN WAN, TING WANG, QIBAI HUANG, WEIGUANG ZHENG, FENG GU 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. SEP 2017, VOL. 19, ISSUE 6. ISSN 1392-8716 3979 

and No. 51405093) and the Technology Foundation of Nantong (GY12016043). 

References 

[1] Chang F. K. Structural health monitoring. Proceedings of the 6th and 7th International Workshops on 
Structural Health Monitoring, Stanford University, Stanford, CA, CRC Press, New York, 2009. 

[2] Wu Z. S., Xu B., Harada T. Review on structural health monitoring for infrastructure. Journal of 
Applied Mechanics, Vol. 6, 2003, p. 1043-1054. 

[3] Masri S. F., Smyth A. W., Chassiakos A. G., Caughey T. K., Hunter N. F. Application of neural 
networks for detection of changes in nonlinear systems. Journal of Engineering Mechanics, Vol. 126, 
2000, p. 666-676. 

[4] Masri S. F., Caffrey J. P., Caughey T. K., Smyth A. W., Chassiakos A. G. Identification of the 
state equation in complex non-linear systems. International Journal of Non-Linear Mechanics, Vol. 39, 
2004, p. 1111-1127. 

[5] Smyth A. W., Masri S. F., Kosmatopoulos E. B., Chassiakos A. G., Caughey T. K. Development 
of adaptive modeling techniques for non-linear hysteretic systems. International Journal of Non-Linear 
Mechanics, Vol. 37, 2002, p. 1435-1451. 

[6] Hoshiya M., Saito E. Structural identification by extended Kalman filter. Journal of Engineering 
Mechanics, Vol. 110, 1984, p. 1757-1770. 

[7] Ghanem R., Shinozuka M. Structural system identification. I: Theory. Journal of Engineering 
Mechanics, Vol. 121, 1995, p. 255-264. 

[8] Shinozuka M., Ghanem R. Structural system identification. II: Experimental verification. Journal of 
Engineering Mechanics, Vol. 121, 1995, p. 265-273. 

[9] Liu X., Escamilla-Ambrosio P. J., Lieven N. Extended Kalman filtering for the detection of damage 
in linear mechanical structures. Journal of Sound and Vibration, Vol. 325, 2009, p. 1023-1046. 

[10] Yang J. N., Lin S., Huang H., Zhou L. An adaptive extended Kalman filter for structural damage 
identification. Structural Control and Health Monitoring, Vol. 13, 2006, p. 849-867. 

[11] Petersen C. D., Fraanje R., Cazzolato B. S., Zander A. C., Hansen C. H. A Kalman filter approach 
to virtual sensing for active noise control. Mechanical Systems and Signal Processing, Vol. 22, 2008, 
p. 490-508. 

[12] Sato T., Qi K. Adaptive H∞ filter: its application to structural identification. Journal of Engineering 
Mechanics, Vol. 124, 1998, p. 1233-1240. 

[13] Liu L., Lei Y., He M. A two-stage parametric identification of strong nonlinear structural systems 
with incomplete response measurements. International Journal of Structural Stability and Dynamics, 
2015, p. 1640022. 

[14] Yoshida I. Damage detection using Monte Carlo filter based on non-Gaussian noise. Structural Safety 
and Reliability, ICOSSAR’01, 2001. 

[15] Khalil M., Sarkar A., Adhikari S., Poirel D. The estimation of time-invariant parameters of noisy 
nonlinear oscillatory systems. Journal of Sound and Vibration, Vol. 344, 2015, p. 81-100. 

[16] Ching J., Beck J. L., Porter K. A. Bayesian state and parameter estimation of uncertain dynamical 
systems. Probabilistic Engineering Mechanics, Vol. 21, 2006, p. 81-96. 

[17] Yang J. N., Pan S., Huang H. An adaptive extended Kalman filter for structural damage 
identifications II: unknown inputs. Structural Control and Health Monitoring, Vol. 14, 2007, 
p. 497-521. 

[18] Lei Y., Jiang Y., Xu Z. Structural damage detection with limited input and output measurement 
signals. Mechanical Systems and Signal Processing, Vol. 28, 2012, p. 229-243. 

[19] Lei Y., Wu Y., Li T. Identification of non-linear structural parameters under limited input and output 
measurements. International Journal of Non-Linear Mechanics, Vol. 47, 2012, p. 1141-1146. 

[20] Gillijns S., De Moor B. Unbiased minimum-variance input and state estimation for linear 
discrete-time systems with direct feedthrough. Automatica, Vol. 43, 2007, p. 934-937. 

[21] Anderson B. D., Moore J. B. Optimal Filtering. Prentice-Hall, Englewood Cliffs, NJ, 1979. 
[22] Lourens E., Papadimitriou C., Gillijns S., Reynders E., Roeck De G., Lombaert G. Joint 

input-response estimation for structural systems based on reduced-order models and vibration data 
from a limited number of sensors. Mechanical Systems and Signal Processing, Vol. 29, 2012, 
p. 310-327. 



2581. SIMULTANEOUS EXCITATION AND PARAMETER IDENTIFICATION FOR NON-LINEAR STRUCTURAL SYSTEMS.  
ZHIMIN WAN, TING WANG, QIBAI HUANG, WEIGUANG ZHENG, FENG GU 

3980 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. SEP 2017, VOL. 19, ISSUE 6. ISSN 1392-8716  

 

Zhimin Wan received the B.S. degree in mechanical engineering and automation from 
Hohai University, China, in 2010. He completed his Ph.D. in mechanical engineering from 
Huazhong University of Science and Technology, China, in 2015. Now he is a post doctor 
in Huazhong University of Science and Technology, China. His current research interests 
include structural dynamics, inverse problem, machine vision and intelligent drive. 

 

Ting Wang received the B.S. degree in mechanical engineering and automation from 
Hohai University, China, in 2010. She completed her Ph.D. in mechanical engineering 
from Huazhong University of Science and Technology, China, in 2015. Now she is a 
lecturer in School of Mechanical Engineering, Nantong Vocational University, China. Her 
current research interests include inverse problem and intelligent control. 

 

Qibai Huang received the M.S. degrees in vehicle engineering from Jilin University, 
China, in 1987, and completed his Ph.D. in mechanical vibration and Noise Control from 
Huazhong University of Science and Technology, in China, in 1994. Now he is a Professor 
in College of Mechanical Science and Engineering, Huazhong University of Science and 
Technology. His research interests include mechanical vibration, noise control, and vehicle 
dynamics. 

 

Weiguang Zheng received the B.S. degree in mechanical engineering and automation 
from Wuhan University, China, in 2005. He completed his Ph.D. in mechanical 
engineering from Huazhong University of Science and Technology, China, in 2013. Now 
he is a lecturer in School of Mechanical and Electrical Engineering, Guilin University of 
Electronic Technology, China. His current research interests include structural dynamics, 
smart structures and active/passive noise control. 

 

Feng Gu received the B.S. degree in mechanical engineering and automation from 
Southeast University, China, in 2000. Now he is an Associate Professor in School of 
Vehicle and Transportation Engineering, Nantong Vocational University, China. His 
current research interests include vehicle dynamics and composite material. 

 




