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Abstract. To make up deficiency of the finite element method in predicting nonlinear dynamic 
characteristics of coaxial rotor systems, nonlinear dynamic model of a coaxial rotor system was 
established with a method combining the finite element method and the fixed interface modal 
synthesis method. Then an implicit time domain method was presented to solve the nonlinear 
equations of motion thus dynamic characteristics of the rotor system can be obtained. The 
computational efficiency of this method largely depends on the number of degrees of freedom 
with nonlinear forces acting on. With nonlinear forces of squeeze film damper and intermediate 
bearing considered, nonlinear dynamic response characteristics of the coaxial rotor system under 
multiple unbalance forces were studied in this work. The results showed that the unbalance 
excitation frequencies are dominant in the responses of the rotor system. Besides, due to coupling 
effect of the intermediate bearing some combinations of the unbalance excitation frequencies were 
also observed in the spectrogram. Stability and periodicity of the rotor system was investigated 
with bifurcation diagram, Poincare map and phase diagram. It was found that the rotor system 
executes multiple periods orbital motion under relatively low rotational speeds. With the 
increasing of rotational speed, the rotor system would execute quasi-periodic motion, chaotic 
motion and periodic motion again. The quasi-periodic motion and chaotic motion are closely 
related with the SFD. Finally, under relatively low speed, the nonlinear model was validated by 
comparing the simulation results with the experimental data. The proposed modeling and solving 
method is expected to provide theoretical and engineering basis for improving prediction of 
nonlinear dynamic characteristics of complex rotor systems. 
Keywords: nonlinear vibration, counter-rotating coaxial rotor system, intermediate bearing, 
modal synthesis method, finite element method. 

1. Introduction 

Rotor system is the main source of vibration of aeroengines. Stability and reliability of 
aeroengines mostly depend on dynamic behaviors of the rotor system. In recent years, 
counter-rotating coaxial system has been applied to many aeroengines, such as RB211, GE120, 
F119 and so on. The counter-rotating technology is beneficial to improve the fuel consumption 
rate and thrust-weight ratio as well as reduce the gyroscopic torque of aeroengines [1]. Although 
advantageous for many aspects, it has made dynamic behaviors of the rotor system more complex, 
especially when coupled with squeeze film dampers(SFD) and intermediate bearing, both of which 
have been widely applied in modern aeroengines. Surveys of the dynamic issues associated with 
counter-rotating dual-rotor system are listed in references [2, 3]. 

The most commonly recurring problems in rotor dynamics are excessive steady state 
synchronous vibration levels and subsynchronous rotor instabilities. The first problem is caused 
mostly by the synchronous unbalance force and, generally, the second one is caused by nonlinear 
forces exerted by nonlinear components such as SFD and bearing. The steady state synchronous 
vibration levels may be reduced by improved balancing, or by moving critical speeds of the system 
out of the operating range [4], or by introducing external damping to limit peak amplitudes at 
critical speeds [5]. Subsynchronous rotor instabilities can be avoided by rising the natural 
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frequency of the rotor system, or by introducing damping to increase the onset rotor speed of 
instability [6]. However, all these problem solving measures are based on accurate approximation 
of the actual rotor system. 

To better approximate the rotor system, all the forces, linear and nonlinear, should be 
considered in the dynamic model. However, the problem can be quite complicated when nonlinear 
forces are considered. The problem of nonlinear response of rotor systems are discussed in the 
extensive investigations of references [7-15]. Glasgow D. A. [8] employed the fixed interface 
modal synthesis method to reduce the size of the rotor system to obtain better computational 
efficiency. In reference [11, 12], nonlinear response of a dual-rotor system with intermediate 
bearing was studied with transfer matrix method. Wang W. [14] improved the free interface modal 
synthesis method to analyze dynamic characteristics of a multi-rotor system. In 2004, Hsiao-Wei 
[15] established the mathematical model of a dual-rotor system with the finite element method to 
investigate the influences of speed ratio of the rotor system and stiffness of the intermediate 
bearing. From all the above references it can be seen that the transfer matrix method, finite element 
method and component modal synthesis method are commonly used in rotor dynamic analysis. In 
present work, nonlinear model of a counter-rotating coaxial test rig is established with a method 
combining the finite element method and the component modal synthesis method for accuracy 
and efficiency. 

Notwithstanding the many investigations that there have been of the dynamic behavior of rotor 
systems with nonlinear forces acting on, the problem of developing efficient method for analyzing 
nonlinear dynamic behaviors of rotor system still needs to be solved. All these facts necessitate 
that more detailed models should be established and more efficient and robust numerical methods 
should be developed to give better approximation of dynamic behaviors of rotor systems. 

In this paper, a counter-rotating coaxial system was modeled with finite element method and 
fixed interface modal synthesis method. Nonlinear forces exerted by the squeeze film damper and 
the intermediate bearing were considered. With this nonlinear model and the improved 
Newmark-ߚ method, dynamic characteristics of the rotor system was obtained and then further 
analysis was made and compared with the experimental results. 

2. Model development 

2.1. Finite element formulation 

Fig. 1 shows the rotor element considered in this work. Each element consists of two nodes, 
with four degrees of freedom at each node, namely the lateral displacement and the slope. The 
lateral displacements in ܺ and ܻ directions are denoted with ݑ and ݒ respectively. The slopes are 
denoted with ߠ and ߮ for angular displacements in ܺ and ܻ directions respectively. 

The nodal displacement vector can be described as: ܙ௘ = ሾݑ௘ଵ ௘ଵݒ ௘ଵߠ ߮௘ଵ ௘ଶݑ ௘ଶݒ ௘ଶߠ ߮௘ଶሿ். (1)

The displacement vector within the element can be interpolated as: 

ێێێۏ
,ߦ)௘కݑۍ ,ߦ)௘కݒ(ݐ ,ߦ)௘కߠ(ݐ ,ߦ)௘క߮(ݐ ۑۑۑے(ݐ

ې = ێێۏ
ۍ ଵܰ 0 0 ଶܰ ଷܰ 0 0 ସܰ0 ଵܰ − ଶܰ 0 0 ଷܰ − ସܰ 00 − ෙܰଵ ෙܰଶ 0 0 − ෙܰଷ ෙܰସ 0ෙܰଵ 0 0 ෙܰଶ ෙܰଷ 0 0 ෙܰସۑۑے

ې ௘. (2)ܙ

The shape functions in Eq. (2) are: 
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ەۖۖ
۔ۖۖ
ۓۖۖ ଵܰ = 1 − 1݈௘ଶ + 12݃ ൬12݈݃௘ ߦ + ଶߦ3 − 2݈௘ ଷ൰ߦ ,

ଶܰ = 1݈௘ଶ + 12݃ ൭(݈௘ଶ + ߦ(6݃ − 2݈௘ଶ + 6݈݃௘ ଶߦ + ଷ൱ߦ ,
ଷܰ = 1݈௘ଶ + 12݃ ൬12݈݃௘ ߦ + ଶߦ3 − 2݈௘ ଷ൰ߦ ,
ସܰ = 1݈௘ଶ + 12݃ ቆ−6݃ߦ − ݈௘ଶ − 6݈݃௘ ଶߦ + ଷቇߦ ,

 (3a)

ەۖۖ
۔ۖۖ
ۓۖۖ ෙܰଵ = 1݈௘ଶ + 12݃ ൬6݈௘ ଶߦ − ൰ߦ6 ,ෙܰଶ = 1݈௘ଶ + 12݃ ቆ݈௘ଶ + 12݃ − 4݈௘ଶ + 12݈݃௘ ߦ + ଶቇߦ3 ,ෙܰଷ = 1݈௘ଶ + 12݃ ൬6ߦ − 6݈௘ ଶ൰ߦ ,ෙܰସ = 1݈௘ଶ + 12݃ ቆ12݃ − 2݈௘ଶ݈௘ ߦ + ଶቇߦ3 .

 (3b)
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Fig. 1. Diagram of beam element 

In Eq. (3), ݈௘ is the element length and ݃ is formulated as given below: ݃ = ௘, (4)ܣ௘ܩߢ௘ܫ௘ܧ

where ܧ௘  the Young’s Modulus, ܫ௘  the area moment of inertia, ܩ௘  the shear modulus, ܣ௘  the 
cross-sectional area. ߢ is the shear coefficient, and for a hollow circular shaft section [16, 17]: 

ߢ = 6(1 + ଶ(1(ߤ + ଶ)ଶ(7ߣ + ߤ12 + ଶ)(1ߤ4 + ଶ)ଶߣ + 4(5 + ߤ6 + ଶ, (5)ߣ(ଶߤ2

where ߤ is the Poisson’s ratio, ߣ is the ratio of the inner shaft radius to the outer shaft radius. 
Hence for a solid shaft ߣ → 0. 

With rotary inertia and shear effects considered, the kinetic energy and strain energy for a shaft 
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element is: 

௘ܶ = 12 න ቀߩ௘ܣ௘ݑሶ ௘కଶ ,ߦ) (ݐ + ௘ܫ௘ߩ ሶ߮ ௘కଶ ,ߦ) ቁ(ݐ ௟೐଴ߦ݀ , (6a)

௘ܷ = 12 න ቆ߲߮௘క(ߦ, ߦ߲(ݐ ቇ் ௘ܫ௘ܧ ቆ߲߮௘క(ߦ, ߦ߲(ݐ ቇ ߦ݀ + 12௟೐଴ ߢ න ௟೐଴ߦ݀ߛ௘ܣ௘ܩ்ߛ , (6b)

where ߩ௘ denotes the density of the material and ߛ is the transverse shear strain [18]. 
And thus the element mass matrix: 

௘ܕ = ௘ܣ௘ߩ න ሾۼሿ்ሾۼሿ݀ߦ + ௘ܫ௘ߩ න ൣ݃ሾۼᇱᇱᇱሿ + ሾۼᇱሿ൧்ൣ݃ሾۼᇱᇱᇱሿ + ሾۼᇱሿ൧݀ߦ௟೐଴ .௟೐଴  (7)

The element stiffness matrix: 

௘ܓ = ௘ܫ௘ܧ න ሾۼᇱᇱሿ்ሾۼᇱᇱሿ݀ߦ + ௘݃ܫ௘ܧ න ሾۼᇱᇱᇱሿ்ሾۼᇱᇱᇱሿ݀ߦ௟೐଴
௟೐଴ , (8)

where: 

۔ۖۖەۖۖ
ᇱሿۼሾۓ = ݀ሾ ଵܰ ଶܰ ଷܰ ସܰሿ݀ߦ ,ሾۼᇱᇱሿ = ݀ଶሾ ଵܰ ଶܰ ଷܰ ସܰሿ݀ߦଶ ,ሾۼᇱᇱᇱሿ = ݀ଷሾ ଵܰ ଶܰ ଷܰ ସܰሿ݀ߦଷ . 

(9)

The element gyroscopic matrix: 

௘܏ = ௘ܫ௘ߩ2− න (۰ଶ் ۰ଵ − ۰ଵ் ۰ଶ)݀ߦ௟೐଴ , (10)

where: 

൤۰ଵ۰ଶ൨ = ቈ 0 − ෙܰଵ ෙܰଶ 0 0 − ෙܰଷ ෙܰସ 0ෙܰଵ 0 0 ෙܰଶ ෙܰଷ 0 0 ෙܰସ቉. (11)

For disk element, the mass and gyroscopic matrices are: 

௘ௗܕ = ێێێۏ
ௗ௜݉ۍ 0 0 00 ݉ௗ௜ 0 00 0 ௗ௜ܫ 00 0 0 ௗ௜ܫ ۑۑۑے

(12a) ,ې

௘ௗ܏ = ێێۏ
0ۍ 0 0 00 0 0 00 0 0 ௣௜0ܫ 0 ௣௜ܫ− 0 ۑۑے

(12b) ,ې

where ݉ௗ௜ ௗ௜ܫ ,  and ܫ௣௜  are the mass, diametral moment of inertia and polar moment of inertia of the 
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disk, respectively. 

2.2. Nonlinear forces of the supports 

For squeeze film dampers analyzed in this work, based on the short bearing assumption and 
the Reynolds boundary conditions, nonlinear forces of the SFD can be expressed as [19, 20]: 

۔ۖەۖ
ۓ ௫݂௦௙ௗ = − ଶݔ)ଷܿଶܮ௦ܴߤ + ଶ)ଵଶݕ ଶܫሶߝ൫ݔൣ + ߝ ሶ߰ ଵ൯ܫ − ଵܫሶߝ൫ݕ + ߝ ሶ߰ ,ଷ൯൧ܫ

௬݂௦௙ௗ = − ଶݔ)ଷܿଶܮ௦ܴߤ + ଶ)ଵଶݕ ଶܫሶߝ൫ݕൣ + ߝ ሶ߰ ଵ൯ܫ + ଵܫሶߝ൫ݔ + ߝ ሶ߰ ଷ൯൧, (13a)ܫ

ߝ = ඥݔଶ + ଶݕ ܿ⁄ , (13b)ߝሶ = ሶݔݔ) + (ሶݕݕ ቀܿඥݔଶ + ଶቁൗݕ , (13c)ሶ߰ = ሶݔݕ) − (ሶݕݔ ଶݔ) + ⁄(ଶݕ , (13d)tan ߰ = ݕ ⁄ݔ , (13e)

where ݔ and ݕ are the horizontal and vertical displacements of the journal. ܫ௝  (݆ = 1, 2, 3) are 
Sommerfeld integrals. ܴ and ܮ are radius and length of the SFD respectively. ߤ௦ and ܿ denote the 
dynamic viscosity of the film and the radial clearance of the SFD. 

As for the rolling ball bearing, based on pure rolling assumption and the Hertz contact theory, 
nonlinear force of the rolling ball bearing [21] is: 

۔ۖۖەۖۖ
ۓ ௫݂௕ = ݇௡ ෍ ఏ௝కே್ݑ

௝ୀଵ ఏ௝൯ݑ൫ܪ sin ௝ߠ ,
௬݂௕ = ݇௡ ෍ ఏ௝కே್ݑ

௝ୀଵ ఏ௝൯ݑ൫ܪ cos ௝ߠ , (14a)

௝ߠ = ݆)ߨ2 − 1) ௕ܰ + ߱௖ݐ⁄ , (14b)ݑఏ௝ = ௜௥ݔ) − (௢௥ݔ sin ௝ߠ + ௜௥ݕ) − (௢௥ݕ cos ௝ߠ − ߛ 2⁄ , (14c)ܪ൫ݑఏ௝൯ = ൜0,        ݑఏ௝ ≤ ఏ௝ݑ    ,ఏ௝ݑ,0 > 0, (14d)߱௖ = (߱௜௡ݎ + ߱௢௨௧ܴ) (ܴ + ⁄(ݎ , (14e)

where the superscript ݅ݎ and ݎ݋ in Eq.(14c) denote inner ring and outer ring of the bearing. ݇௡ in 
Eq.(14a) is the contact stiffness between rollers and rings. ௕ܰ represent number of the rollers.  ߦ = 3/2 for the rolling ball bearing used in the intermediate support. ߠ௝ is the rotation angle of 
the ݆th roller at time ߛ .ݐ and ߱௖ are bearing radial clearance and rotational speed of the bearing 
retainer respectively. ݑఏ௝  is the elastic radial deformation of the ݆ th roller. ݎ and ܴ  represent 
radius of the inner and outer ring. ߱௜௡ and ߱௢௨௧ are the rotational speeds of the inner and outer 
rings. 

2.3. Equations of motion and numerical algorithm 

Equation of motion of a nonlinear rotor system can be written as: ܝۻሷ + ሶܝ۵ + ܝ۹ = ۴௡௢௡௟ + ۴௨௡௕, (15)

where ۴௨௡௕ is the unbalance force vector. ۴௡௢௡௟ is the nonlinear forces exerted by the SFDs and 
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rolling bearing in this work. ۹ ,ۻ, and ۵ can be obtained quite readily with elements formulated 
in Section 2.1. 

Mathematically, the model is a set of nonlinear second order differential equations. The 
computational efficiency of which depends on the numerical methods applied and the total DOFs 
of the rotor system. To combine accuracy of the finite element model and computational  
efficiency, the fixed interface modal synthesis is applied to reduce dimension of the mathematical 
model and thus the computational effort. 

Eq. (15) can be rewritten as: 

൤ۻூூ ௃ூۻூ௃ۻ ௃௃൨ۻ ൤ܝሷ ூܝሷ ௃൨ + ൤۵ூூ ۵ூ௃۵௃ூ ۵௃௃൨ ൤ܝሶ ூܝሶ ௃൨ + ൤۹ூூ ۹ூ௃۹௃ூ ۹௃௃൨ ቂܝூܝ௃ቃ = ൤۴ூ௨௡௕૙ ൨ + ൤ ૙۴௃௡௢௡௟൨, (16)

where ܝூ  can be interpreted as linear DOFs, with only unbalance forces acting on, while ܝ௃ 
represents the interface DOFs or nonlinear DOFs in this work, including all the nodes with 
nonlinear forces acting on. 

According to fixed interface modal synthesis method, transformation between physical and 
modal coordinates is: ቂܝூܝ௃ቃ = ቂ૖௞ ૖௖૙ ۷ ቃ ቂܙ௞ܝ௃ ቃ = ܂ ቂܙ௞ܝ௃ ቃ, (17a)

where ૖௞  – the mass normalized normal mode matrix, ૖௖  – the mass normalized constrained 
mode, ۷ – unity matrix, ܙ௞ – the normal mode coordinates, ܂ – the transformation matrix. ૖௖ is 
given as below: ૖௖ = −(۹ூூ)ି૚۹ூ௃. (17b)

In Eq. (16), let ܝ௃ = 0 and neglecting the gyroscopic effects gives: ۻூூܝሷ ூ + ۹ூூܝூ = ૙. (17c)

Solving the eigenvalue problem corresponding to Eq. (17c) gives the mass normalized normal 
mode matrix ૖௞ and the modal frequency Ω௞. 

Substitute Eq. (17a) into Eq. (16) and premultiply with ்܂ to obtain the reduced equations of 
motion: 

ቈ ۷ ഥۻ ூ௃ۻഥ ௃ூ ഥۻ ௃௃቉ ൤ܙሷ ௞ܝሷ ௃ ൨ + ቈ۵ഥூூ ۵ഥூ௃۵ഥ௃ூ ۵ഥ௃௃቉ ൤ܙሶ ௞ܝሶ ௃ ൨ + ቈ۹ഥ ூூ ૙૙ ۹ഥ௃௃቉ ቂܙ௞ܝ௃ ቃ = ቈ૖௞்۴ூ௨௡௕૖௖் ۴ூ௨௡௕቉ + ൤ ૙۴௃௡௢௡௟൨, (18a)

where: 

ەۖۖۖ
۔ۖ
ഥۻۓۖۖ ௃௃ = ௃௃ۻ + ௃ூ૖௖ۻ + ૖௖் ൫ۻூூ૖௖ + ഥۻ,ூ௃൯ۻ ூ௃ = ഥۻ ௃ூ = ૖௞்൫ۻூூ૖௖ + ூ௃൯,۵ഥூூۻ = ૖௞்۵ூூ૖௞,۵ഥூூ = ۵௃௃ + ۵௃ூ૖௖ + ૖௖் ൫۵ூூ૖௖ + ۵ூ௃൯ + ௃௃,۵ഥூ௃܋ = ۵ഥ௃ூ = ૖௞்۵ூூ૖௖ + ૖௞்۵ூ௃,۹ഥ ூூ = diag(Ω௥ଶ)    1 ≤ ݎ ≤ ݊,۹ഥ௃௃ = ۹ூ௃ + ۹௃ூ૖௖ + ,௃௃ܓ

 (18b)

where Ω௥ is the ݎth modal frequency obtained from Eq. (17c). ۴ூ௨௡௕ is the unbalance force acting 



2407. RESEARCH ON MODELING AND DYNAMIC CHARACTERISTICS OF COMPLEX COAXIAL ROTOR SYSTEM.  
FEI WANG, GUI-HUO LUO, XI-GUAN YANG, HAI-TAO CUI 

1530 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MAY 2017, VOL. 19, ISSUE 3. ISSN 1392-8716  

on linear DOFs. ۴௃௡௢௡௟ is the nonlinear force acting on nonlinear DOFs.  
And: 

۴௃௡௢௡௟ = ௃௃ܓ− + ቈ۴௃ௌி஽۴௃஻ ቉, (19)

where ۴௃ௌி஽ = ൣ ଵ݂௫௦௙ௗ ଵ݂௬௦௙ௗ ⋯ ே݂௫௦௙ௗ ே݂௬௦௙ௗ൧  is the nonlinear force vector exerted by SFDs 
which can be calculated with Eq. (13). ۴௃஻ = ൣ ௫݂௕ ௬݂௕ − ௫݂௕ − ௬݂௕൧ is the nonlinear force vector 
exerted by rolling bearing which can be calculated with Eq. (14). ܓ௃௃ and ܋௃௃ are given below: 

௃௃ܓ = ൤ܓ௃஻ ૙૙ ૙൨,     ܋௃௃ = ൤܋௃஻ ૙૙ ૙൨, (20)ܓ௃஻ = diag൫ܓ௃௜஻ ൯,    ܋௃஻ = diag൫܋௃௜஻൯,    1 ≤ ݅ ≤ ௃௜஻ܓ(21) ,ܰ = ൤݇௃௜ 00 ݇௃௜൨,     ܋௃௜஻ = ൤ ௃ܿ௜ 00 ௃ܿ௜൨, (22)

where ݇௃௜ and ௃ܿ௜ are the stiffness and damping coefficients of the elastic support, respectively. ܰ 
is the number of elastic supports. 

Rearranging Eq. (18) gives: ܙሷ ௞ + ۵ഥூூܙሶ ௞ + ۹ഥ ூூܙ௞ = ૖௞்۴ூ௨௡௕ − ഥۻ ூ௃ܝሷ ௃ − ۵ഥூ௃ܝሶ ௃, (23)ۻഥ ௃௃ܝሷ ௃ + ۵ഥ௃௃ܝሶ ௃ + ۹ഥ௃௃ܝ௃ = ۴௃௡௢௡௟ + ૖௖் ۴ூ௨௡௕ − ഥۻ ௃ூܙሷ ௞ − ۵ഥ௃ூܙሶ ௞. (23b)

In Eq. (23), the vector ܙ௞  and ܝ௃  can be interpreted as linear and nonlinear DOFs of the 
reduced system respectively. Obviously, there is no nonlinear force acting on the linear DOFs. 
Thus, the explicit Newmark-ߚ method applies to Eq.(23a) while implicit Newmark-ߚ method 
applies to Eq. (23b). 

According to assumptions of Newmark-ߚ method, in time interval ሾݐ௡  :௡ାଵሿݐ
ቈܙሶ ௞௡ାଵܝሶ ௃௡ାଵ቉ = ൤ܙሶ ௞௡ܝሶ ௃௡൨ + ቊ(1 − (ߚ ൤ܙሷ ௞௡ܝሷ ௃௡൨ + ߚ ቈܙሷ ௞௡ାଵܝሷ ௃௡ାଵ቉ቋ Δݐ, (24a)ቈܙ௞௡ାଵܝ௃௡ାଵ቉ = ൤ܙ௞௡ܝ௃௡൨ + ൤ܙሶ ௞௡ܝሶ ௃௡൨ Δݐ + ቊ(0.5 − (ߙ ൤ܙሷ ௞௡ܝሷ ௃௡൨ + ߙ ቈܙሷ ௞௡ାଵܝሷ ௃௡ାଵ቉ቋ Δݐଶ, (24b)

where ݐ௡ାଵ = ௡ݐ + Δݐ and Δݐ is the time increment. The superscript ݊ and ݊ + 1 denote ݐ௡ and ݐ௡ାଵ. 
Following equations can be obtained from Eq. (24): ܙሷ ௞௡ାଵ = ௞௡ାଵܙܽ − ௤௡ۯ ሶܙ     , ௞௡ାଵ = ௞௡ାଵܙܾ − ۰௤௡, (25)ܝሶ ௃௡ାଵ = ௃௡ାଵܝܽ − ሶܝ     ,௃௡ۯ ௃௡ାଵ = ௃௡ାଵܝܾ − ۰௃௡. (26)

With: 
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ەۖۖۖ
۔ۖۖ
௤௡ۯۓۖۖۖ = ଶݐΔߙ1 ௞௡ܙ + ݐΔߙ1 ሶܙ ௞௡ + ൬ ߙ12 − 1൰ ሷܙ ௞௡,ۯ௃௡ = ଶݐΔߙ1 ௞௡ܝ + ݐΔߙ1 ሶܝ ௞௡ + ൬ ߙ12 − 1൰ ሷܝ ௞௡,۰௤௡ = ݐΔߙߚ ௞௡ܙ + ൬ߙߚ − 1൰ ሶܙ ௞௡ + ൬ߙߚ − 2൰ ሷܙ ௞௡,۰௃௡ = ݐΔߙߚ ௞௡ܝ + ൬ߙߚ − 1൰ ሶܝ ௞௡ + ൬ߙߚ − 2൰ ሷܝ ௞௡,ܽ = ଶݐΔߙ1 ,    ܾ = ݐΔߙߚ .

 (27)

Substituting Eq. (24)-Eq. (27) into Eq. (23) yields: ܙ௞௡ାଵ = ௤ି܁ ଵ൫૖௞்۴ூ௨௡௕ ௡ାଵ − ௃௡ାଵܝ௤܄ + ௃܁௤൯, (28a)൫܅ − ௤ି܁௃܄ ଵ܄௤൯ܝ௃௡ାଵ = ۴௃௡௢௡௟ ௡ାଵ + ൫૖௖் − ௤ି܁௃܄ ଵ૖௞்൯۴ூ௨௡௕ ௡ାଵ − ௤ି܁௃܄ ଵ܅௤ + ௃. (28b)܅

With: ܅௤ = ഥۻ ூூۯ௤௡ + ۵ഥூூ۰௤௡ + ഥۻ ூ௃ۯ௃௡ + ۵ഥூ௃۰௃௡, (29a)܅௃ = ഥۻ ௃௃ۯ௃௡ + ۵ഥ௃௃۰௃௡ + ഥۻ ௃ூۯ௤௡ + ۵ഥ௃ூ۰௤௡, (29b)܁௤ = ഥۻܽ ூூ + ܾ۵ഥூூ + ۹ഥ ூூ, (29c)܁௃ = ഥۻܽ ௃௃ + ܾ۵ഥ௃௃ + ۹ഥ௃௃, (29d)܄௤ = ഥۻܽ ூ௃ + ܾ۵ഥூ௃, (29e)܄௃ = ഥۻܽ ௃ூ + ܾ۵ഥ௃ூ, (29f)۴௃௡௢௡௟ ௡ାଵ = ۴௃௡௢௡௟ ௡൫ܝ௃௡ାଵ, ሶܝ ௃௡ାଵ൯. (29g)

Using Eq. (26) to substitute for ܝሶ ௃୬ାଵ  in Eq. (29g) and substitute the new Eq. (29g) into 
Eq. (28b) to yield nonlinear equations of ܝ௃௡ାଵ. After solving Eq. (28b) for ܝ௃௡ାଵ with numerical 
algorithms, ܙ௞௡ାଵ can be obtained with ܝ௃௡ାଵ substituted into Eq. (28a). Thus ܝሶ ௃௡ାଵ, ܝሷ ௃௡ାଵ, ܙሶ ௞௡ାଵ, ܙሷ ௞௡ାଵ and can be solved from Eq. (25) and Eq. (26). The process continues to repeat and move 
forward to find ܝ௃௡ାଶ, and so on. When the iteration is over, the nonlinear response in physical 
coordinate system can be obtained from Eq. (17a). 

Computational efficiency of solving Eq. (23) depends on solving Eq. (23b) while dimensions 
of Eq. (23b) depend on DOFs with nonlinear forces acting on. Thus, the computational efficiency 
can be greatly improved with the modeling technique and solving method described in this work. 

To summarize, nonlinear model of the rotor system is established with finite element method 
and fixed interface modal synthesis method; subsequently an implicit time-domain method based 
on Newmark-ߚ method is applied to solve the equations of motion of the reduced system thus 
dynamic characteristics can be obtained. The process of modeling and solving is described as 
follows: First, only the rotating components of the rotor assembly are modeled with the element 
described in Section 2.1 thus ۹ ,ۻ and ۵ in Eq. (15) can be obtained and partitioned as Eq. (16) 
for calculating ૖௖ and later use. Then, in accordance with Eq. (17c), modal analysis is conducted 
on the model with all supports pinned to obtain ૖௞ and Ω௞. The left hand side of Eq. (18a) now is 
obtained with ૖௞, ૖௖ and the partitioned ۹ ,ۻ and ۵ while the right hand side is formulated with 
Eq. (13), Eq. (14) and Eq. (19)-Eq. (22). Finally, Eq. (18a) is solved with the numerical method 
which is described by Eq. (23)-Eq. (29). Flowchart of the modeling and solving method is shown 
in Fig. 2. 
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Fig. 2. Flowchart of modeling and solving 

2.4. Test rig description 

An overall view of the dual-rotor test rig is given in Fig. 3. The test rig was designed to study 
the dynamic characteristics of co-and counter-rotating dual-rotor systems with 4 or 5 supports. In 
this work, the 4 supports counter-rotating dual-rotor system is studied. So, the additional support 
in Fig. 3 was removed. Thus, the studied rotor system is designed with 4 supports and 4 disks, two 
for each rotor. The test rig consists of two shafts disposed along the same axis, connected by an 
intermediate bearing. Each shaft is driven by its own motor thus their spin speeds can be different. 
Speed ratio of outer and inner rotor is –1.65. Rear support of the outer rotor is intermediate support 
in which a rolling ball bearing is adopted. Support I and II are front and rear supports of inner 
rotor respectively while Support III and IV are front and rear support of outer rotor. The squirrel 
cage + rolling bearing + SFD supporting scheme is adopted for support I, II and III. While 
support IV, or the intermediate bearing, is mounted without SFD. Four eddy current probes are 
placed to measure the displacement of disk 2 and 4, two for each disk. It is to be noted that in 
Fig. 3 the eddy current probes have not been placed in the right positions yet. 

The test profiles include slow run-up and run-down through the speed range of the test rig. The 
angular acceleration for inner rotor during run-up and rundown is approximately 10 rpm/s.  
Besides, the steady state response are measured when inner rotor spins at 128 rad/s, 160 rad/s and 
210 rad/s. The operational ranges for the inner and outer rotor are 0-232 rad/s and 0-382 rad/s 
respectively. The excitation is only due to the residual unbalance of the rotors. 
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Fig. 3. Dual-rotor test rig 

3. Numerical results and experimental validation 

3.1. Model introduction 

The counter-rotating coaxial system studied in this paper is presented in Fig. 4. 
The stationary coordinate system in Fig. 4 consists of three mutually perpendicular axes, ݖ݋ ,ݕ݋ ,ݔ݋, intersecting at the point ݋ and axis of the rotor coincides with axis ݖ݋. The axes ݖ݋ ,ݔ݋ are 

horizontal, ݕ݋ is vertical. 

 
Fig. 4. Structural diagram of the coaxial rotor system 

Model parameters of the rotor system studied in this work are listed in Table 1-5. The Young’s 
modulus of the shaft is 196 GPa, mass density 7810 kg/m3, and shear modulus 75.5 GPa. To apply 
modal synthesis method, 40 modes are retained in the normal mode matrix ૖௞ . For the 
Newmark-ߚ method, ߙ ߚ ,0.25 = = 0.5. 

Geometric dimensions and information of each element are listed in Table 1. Stiffness 
coefficients of elastic supports are listed in Table 2. Parameters of the intermediate bearing and 
SFDs are listed in Table 3 and 4. The unbalance configuration and inertia properties of each disk 
are listed in Table 5. 

x

y

z
o
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Table 1. Dimension and elements information of the rotor system 
Node no. Axial location (m) Bearing/disk Element no. Outer diameter (m) Inner diameter (m) 

1 0  1 0.018 0.00 
2 0.08143  2 0.018 0.00 
3 0.16286  3 0.018 0.00 
4 0.24429  4 0.018 0.00 
5 0.24909  5 0.018 0.00 
6 0.25479  6 0.018 0.00 
7 0.28879  7 0.018 0.00 
8 0.32279  8 0.018 0.00 
9 0.35879 Disk no. 1 9 0.018 0.00 
10 0.38369  10 0.018 0.00 
11 0.40859  11 0.018 0.00 
12 0.43349  12 0.018 0.00 
13 0.43869 Bearing no. 1 13 0.018 0.00 
14 0.44479  14 0.022 0.00 
15 0.54752  15 0.022 0.00 
16 0.65025  16 0.022 0.00 
17 0.75298  17 0.022 0.00 
18 0.85571  18 0.022 0.00 
19 0.95844  19 0.022 0.00 
20 1.06117  20 0.022 0.00 
21 1.06517 Bearing no. 4 21 0.022 0.00 
22 1.06867  22 0.022 0.00 
23 1.08867  23 0.022 0.00 
24 1.10867 Disk no. 2 24 0.022 0.00 
25 1.14274  25 0.022 0.00 
26 1.17681  26 0.022 0.00 
27 1.21088  27 0.017 0.00 
28 1.21488 Bearing no. 2 28 0.014 0.00 
29 1.21838  29 0.014 0.00 
30 1.23038 End of inner rotor 
31 0.64200  30 0.035 0.03 
32 0.66065  31 0.035 0.03 
33 0.67930 Bearing no. 3 32 0.035 0.03 
34 0.68650  33 0.038 0.03 
35 0.71170  34 0.038 0.03 
36 0.73690  35 0.038 0.03 
37 0.76210 Disk no. 3 36 0.038 0.03 
38 0.80784  37 0.038 0.03 
39 0.85358  38 0.038 0.03 
40 0.89932  39 0.038 0.03 
41 0.94506  40 0.038 0.03 
42 0.99080 Disk no. 4 41 0.038 0.03 
43 1.01430  42 0.038 0.03 
44 1.02030  43 0.070 0.03 
45 1.03330  44 0.060 0.03 
46 1.06030  45 0.060 0.03 
47 1.06430 Bearing no. 4 46 0.060 0.03 
48 1.07380     

Table 2. Stiffness of elastic supports (squirrel cage) 
 Support I Support II Support III Support IV 

Stiffness (N/m) 1.45×106 2.21×105 9.29×105  
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Table 3. Parameters of the intermediate bearing 
Radius of inner ring 

(mm) 
Radius of outer ring 

(mm) 
No. of 
rollers 

Contact stiffness 
(N/m3/2) 

Radial clearance 
(μm) 

9.37 14.13 9 7.055×109 6 

Table 4. Parameters of SFDs 

 Inner rotor Outer rotor 
SFD I SFD II SFD III 

Radius ܴ / mm 25 18 35 
Length ܮ / mm 15 15 20 

Radial clearance ܿ / mm 0.1 0.1 0.08 
Dynamic viscosity ߤ௦ / 10-2 Pa·s 1.0752 

Table 5. Unbalance configuration and inertia properties of disks 

 Inner rotor Outer rotor 
Disk 1 Disk 2 Disk 3 Disk 4 

Unbalance (×10-5 kg·m) 2 4 1 2 
Mass (kg) 2.3386 2.3386 3.2590 1.6303 

Polar moment of inertia (kg·m2) 0.00815 0.00815 0.01561 0.00661 
 

 
a) Disk 2 

 
b) Disk 4 

Fig. 5. Spectrum cascade of the horizontal response of disk 2 and 4-numerical simulation 

3.2. Unbalance response analysis 

With the model established by method described in Section 2, steady-state unbalance response 
of the rotor system is obtained for rotational speed of the inner rotor varying from 4 rad/s to 
1600 rad/s with a step length of 2 rad/s. Zero initial condition is adopted for the first step. For the 
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rest steps, result of previous step is adopted as initial condition. Without loss of generality, 
unbalance response of disk 2 and disk 4 are analyzed to evaluate the coupling effect of the 
intermediate bearing. 

 
a) Disk 2 

 
b) Disk 4 

Fig. 6. Spectrum cascade of the horizontal response of disk 2 and 4-experimental results 

Spectrum cascades of the horizontal response of disk 2 and disk 4 with inner rotor operating 
in 4-400 rad/s are shown in Fig. 5 and Fig. 6. The simulation and experimental results are shown 
in Fig. 5 and Fig. 6 respectively. The numerically simulated spectrum cascades of the horizontal 
response of disk 2 and disk 4 with inner rotor operating in 400-1600 rad/s are shown in  
Figs. 7-9. Due to nonlinearities of SFD and the intermediate bearing as well as the multifrequency 
unbalance excitation of the inner and outer rotor, rich frequency components are observed in the 
response of disk 2 and disk 4. Following conclusions can be reached from Fig. 5-9: 

(1) Responses of the inner and outer rotor are coupled because of the intermediate bearing. 
Frequency components, ߱ଵ and ߱ଶ, corresponding to the unbalance excitation frequencies of the 
inner and outer rotor are dominant in the response of disk 2 and disk 4. The coupling effect also 
makes the spectrum cascades corresponding to disk 2 and disk 4 basically follow the same pattern 
with only slight differences in amplitude. 

(2) Frequency components besides ߱ଵ  and ߱ଶ  in the responses of disk 2 and 4, such as  2߱ଵ + ߱ଶ , ߱ଵ + 2߱ଶ , 3߱ଵ + 2߱ଶ , 2߱ଵ + 3߱ଶ , (߱ଶ − ߱ଵ)/2 , seen in Figs. 5-9, are mainly 
caused by the nonlinear forces of the SFD and the coupling effect of the intermediate bearing. 

(3) By comparison between Fig. 5 and Fig. 7 it can be seen that the new combination frequency 
components, 2߱ଶ − ߱ଵ,  3߱ଶ − 2߱ଵ emerge when inner rotor operating in 400-800 rad/s. 
However, 2߱ଶ − ߱ଵ and 3߱ଶ − 2߱ଵ are not observed for both disk 2 and 4 in Fig. 8 and Fig. 9 
when the inner rotor operating in 800-1200 rad/s and 1200-1600 rad/s. Besides, 2߱ଵ + ߱ଶ  is 
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persistent in 0-1600 rad/s for disk 2 and 4, which can be seen from Fig. 5 and Figs. 7-9. 
(4) Two critical speeds of the rotor system, 168 rad/s and 186 rad/s, are observed in rotational 

speed range 0-200 rad/s in Fig. 5. The first one, 168 rad/s, is excited by the outer rotor and the 
second one, 186 rad/s, is excited by the inner rotor. It can be obtained from the experimental data 
shown in Fig. 6 that the corresponding critical speeds of the rotor system are 173 rad/s and 
189 rad/s. Discrepancies of critical speeds between numerical and experimental results are less 
than 3 %, which demonstrate the validity of the model established in this work. 

 
a) Disk 2 

 
b) Disk 4 

Fig. 7. Spectrum cascade of the horizontal response of disk 2 and 4-numerical simulation 

 
a) Disk 2 
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b) Disk 4 

Fig. 8. Spectrum cascade of the horizontal response of disk 2 and 4-numerical simulation 

 
a) Disk 2 

 
b) Disk 4 

Fig. 9. Spectrum cascade of the horizontal response of disk 2 and 4-numerical simulation 

Fig. 10 shows bifurcation diagrams for horizontal displacement of disk 2 and disk 4 with rotor 
speed. Sampling period for the bifurcation diagram is 5×2ߨ/߱ଵ because the rotational speed ratio 
of outer and inner rotor is –1.65 and 5 ≈ 1.65×3. The horizontal axes of Fig. 10(a) and (b) are 
rotational speeds of inner and outer rotor respectively. And the vertical axes are horizontal 
displacement of disk 2 and disk 4. 

Basically, disk 2 and 4 execute multiple period orbital motion with inner rotor operating in 
4-390 rad/s, see Fig. 10(a), Fig. 10(b). However, with the increase of rotational speed, a 
transformation between periodic and chaotic motion can be observed. From 400 rad/s to 600 rad/s, 
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the rotor execute chaotic motion which can be seen from Fig. 10(c), Fig. 10(d) and Fig. 11.  

 
a) Disk 2 

 
b) Disk 4 

 
c) Disk 2 

 
d) Disk 4 

 
e) Disk 2 

 
f) Disk 4 

 
g) Disk 2 

 
h) Disk 4 

Fig. 10. Bifurcation diagrams of the horizontal response of disk 2 and disk 4 with rotor speed 



2407. RESEARCH ON MODELING AND DYNAMIC CHARACTERISTICS OF COMPLEX COAXIAL ROTOR SYSTEM.  
FEI WANG, GUI-HUO LUO, XI-GUAN YANG, HAI-TAO CUI 

1540 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MAY 2017, VOL. 19, ISSUE 3. ISSN 1392-8716  

 
a) Spectrogram b) Phase trajectory 

 
c) Poincare map 

Fig. 11. Disk 2: ߱ଵ = 500 rad/s, ߱ଶ = –825 rad/s 

 
a) Spectrogram 

 
b) Phase trajectory 

 
c) Poincare map 

Fig. 12. Disk 2: ߱ଵ = 740 rad/s, ߱ଶ = –221 rad/s 

 
a) Spectrogram 

 
b) Phase trajectory 

 
c) Poincare map 

Fig. 13. Disk 2: ߱ଵ = 820 rad/s, ߱ଶ = –1353 rad/s 

 
a) Spectrogram 

 
b) Phase trajectory 

 
c) Poincare map 

Fig. 14. Disk 2: ߱ଵ = 868 rad/s, ߱ଶ = –1432 rad/s 
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a) Spectrogram 

 
b) Phase trajectory 

 
c) Poincare map 

Fig. 15. Disk 2: ߱ଵ = 950 rad/s, ߱ଶ = –1567.5 rad/s 

 
a) Spectrogram 

 
b) Phase trajectory 

 
c) Poincare map 

Fig. 16. Disk 2: ߱ଵ = 990 rad/s, ߱ଶ = –1633.5 rad/s 

 
a) Spectrogram 

 
b) Phase trajectory 

 
c) Poincare map 

Fig. 17. Disk 2: ߱ଵ = 1080 rad/s, ߱ଶ = –1782 rad/s 

 
a) Spectrogram 

 
b) Phase trajectory 

 
c) Poincare map 

Fig. 18. Disk 2: ߱ଵ = 1300 rad/s, ߱ଶ = –2145 rad/s 

In Fig. 11, continuous spectrum and the disordered discrete points on Poincare map all suggest 
chaotic motion. With the continuous increasing of rotational speed, from Fig. 12, 740 rad/s for 
inner rotor, it can be seen that although continuous spectrum still can be observed the discrete 
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points on Poincare map has shown a pattern of surrounding four equilibrium points, which 
suggests a transformation to periodic motion is undergoing. With higher rotational speed, 
820 rad/s, period 4 orbital motion is reached, which can be seen quite obviously from Fig. 10(e), 
Fig. 10(f) and Fig. 13. Then the process repeats with increasing rotational speeds, see Fig. 10(g), 
Fig. 10(h) and Fig. 14-Fig. 17. 

Besides the pattern of transformation between different states of motion, it is found that the 
chaotic motion is closely related with the SFD. Fig. 11(a), Fig. 15(a) and Fig. 18(a) show the 
spectrogram of chaotic motion at different rotational speeds, the same low frequency component, 
approximately 30 Hz, can be seen quite obviously. This frequency component, 30 Hz or 188 rad/s, 
is almost the value of the first critical speed excited by the inner rotor. This phenomenon suggests 
that the SFD has an important influence on the state of motion of the rotor system. 

3.3. Experimental validation 

The comparison between numerical and experimental results has already been made in 
previous section, Fig. 5 and 6. Orbits of disk 2 and 4 under three different rotational speeds are 
compared in this section for further validation and analysis, see Fig. 19-Fig. 21.  

 
a) Disk 2: numerical results 

 
b) Disk 2: experimental results 

 
c) Disk 4: numerical results 

 
d) Disk 4: experimental results 

Fig. 19. Orbit of disk 2 and disk 4 with ߱ଵ = 128 rad/s, ߱ଶ = –211 rad/s 

Following conclusions can be reached by analysis of Fig. 19-Fig. 21: 
(1) With dual unbalance excitation, disk 2 and 4 execute petal-shaped orbits. Especially when 

approaching critical speeds of the rotor system, Fig. 20. 
(2) The rotor system is slightly anisotropic, which might be caused by the squirrel cage, see 

Fig. 19(b), Fig. 19(d), 20(b), Fig. 20(d), Fig. 21(b), Fig. 21(d). 
(3) Under relatively low speed, the numerical results show great agreement with the 

experimental results. 
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a) Disk 2: numerical results 

 
b) Disk 2: experimental results 

 
c) Disk 4: numerical results 

 
d) Disk 4: experimental results 

Fig. 20. Orbit of disk 2 and disk 4 with ߱ଵ = 160 rad/s, ߱ଶ = –264 rad/s 

 
a) Disk 2: numerical results 

 
b) Disk 2: experimental results 

 
c) Disk 4: numerical results 

 
d) Disk 4: experimental results 

Fig. 21. Orbit of disk 2 and disk 4 with ߱ଵ = 210 rad/s, ߱ଶ = –346 rad/s 
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4. Conclusions 

A modeling method combining the finite element method and the fixed interface modal 
synthesis method has been developed in the work to establish the nonlinear model of a 
counter-rotating dual-rotor test rig for steady state nonlinear response analysis. First, a finite 
element model of the rotor system is established without considering supports, from which the 
mass, stiffness and gyroscopic matrices are obtained. Together with these matrices, the fixed 
interface modal synthesis method is applied to establish the nonlinear model of the rotor system 
in which the nonlinearities of SFD and intermediate bearing are considered. Subsequently, the 
Newmark-ߚ  method is improved to solve the nonlinear equations of motion. Then dynamic 
characteristics of the rotor system are investigated.  

Conclusions are listed as following: 
1) The modeling method developed in this work is fast and efficient in establishing nonlinear 

model of complex rotor systems. Combing with the improved Newmark-ߚ method, nonlinear 
dynamic characteristics can be obtained accurately and efficiently. 

2) Due to coupling effect of the intermediate bearing, dual unbalance excitation frequencies 
are dominant in the responses of inner and outer rotor. Besides, frequency components other than 
dual unbalance excitation frequencies in the responses of inner and outer rotor are mainly caused 
by coupling effect of the intermediate bearing. 

3) Rotors execute stable periodic orbital motion in 4-390 rad/s. Transformations between 
periodic, quasi periodic and chaotic motion are reached with increasing rotational speed. A low 
frequency component which is approximately the first critical speed of the outer rotor is observed, 
which means the SFD has a great influence on the state of motion of the rotor system. 

4) Orbit of the rotor system under dual unbalance excitation is petal shaped, especially when 
approaching critical speeds of the rotor system. Under relatively low speed, the validities of the 
modeling method and the solving method were demonstrated with the experimental results. 
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