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Abstract. In this paper we present the equations for determining the volume of the pool of peat 
for a set of given three-dimensional coordinates. The discrete approach is discussed and tested for 
additive noise also. Such an approach can be successfully applied in estimating the energy value 
of a pool of peat. By evaluating the sets of each adjacent points the local properties of peat can be 
carried out through the calculations.  
Keywords: volume discretization, pool of peat, energy value. 

1. Introduction 

Potential applications of peat varies from using it as fuel to applying it as a sorbent [1, 2]. In 
either case one needs to find the volume of a particular peatland. And although there are techniques 
like 3D terrestrial laser scanning [3] which makes it easy to obtain surface coordinates it is just 
one of the first steps of the entire process of analysis of the pool of peat. 

In order to estimate the energy value of a particular pool of peat one needs to obtain terrain 
data and analyze a number of samples of the peat. Samples of the peat need to be collected and 
their chemical composition must be determined. Usually the number of samples collected is much 
smaller than the necessary number of surface coordinates. Thus interpolation techniques are 
required to determine the chemical composition of the peat at all of the surface points. 

However, in this paper we are not focusing on interpolation techniques. The set of points, 
where the samples of the peat are taken, is considered to be the same as the points, representing 
peatlend’s surface. In this sense the entire volume is defined as the set of solids. 

1.1. The data and the problem 

As mentioned before the analysis of stored energy value of a particular peatland starts by taking 
a number of samples and determining their chemical composition. Fig. 1 illustrates the schematic 
diagram of a bore for peat along with the information to be determined during chemical analysis 
of the samples. 

Corresponding samples are exactly one over another as bores are drilled vertically. Thus ݔ and ݕ coordinates will be identical for samples from one bore. Furthermore, adjacent bores form 
vertical prisms. If there is a constant number of ݊ samples across all of the bores then the pool of 
peat consists of ݊ − 1 layers of smaller vertical prisms. 

One can construct constrained triangulation from the positions of bores in peatland. We use 
Delaunay triangulation [4] for this. Consider the prism ௜ܲ௝, where ݅ is the index of the triangle in 
corresponding Delaunay triangulation and ݆ is the index of the sample. Fig. 2(b) depicts a prism 
like this. 

The limiting points of the top plane are denoted as ଵܶ, ଶܶ and ଷܶ. ܤଵ, ܤଶ and ܤଷ denotes the 
limiting points for the bottom plane. Thus we need 6 points in three dimensional space to represent 
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a prism ௜ܲ௝: 

ଵܶ = ሺ்ݔଵ, ,ଵ்ݕ ,ଵሻ்ݖ ଶܶ = ሺ்ݔଶ, ,ଶ்ݕ ,ଶሻ்ݖ ଷܶ = ሺ்ݔଷ, ,ଷ்ݕ ଵܤ,ଷሻ்ݖ = ሺݔ஻ଵ, ,஻ଵݕ ,஻ଵሻݖ ଶܤ = ሺݔ஻ଶ, ,஻ଶݕ ,஻ଶሻݖ ଷܤ = ሺݔ஻ଷ, ,஻ଷݕ .஻ଷሻݖ (1) 

 
Fig. 1. A schematic diagram of a bore and a points of sampling in a peatland 

Note that in the case of vertical bores ்ݔଵ = ଶ்ݔ ,஻ଵݔ =  ஻ଶ, etc. Let us denote the volume ofݔ
a vertical prism ௜ܲ௝ as ௜ܸ௝ and the energy value as ܳ௜௝. 

If using a particular programing language as C++ or Java, there are no built-in procedures for 
calculating the volume of solids. In fact finding the volume of non-regular geometry solids as sets 
of prisms ௜ܲ௝ would not be an easy task for a number of mathematically oriented software. Thus 
by employing basic rules from vector operations and calculus we derived Eq. (2) for ௜ܸ௝ 
comprising of basic arithmetical operations: 

௜ܸ௝ = ଵ݃ݔ௠௔௫ଷ3 + ݃ଶݔ௠௔௫ଶ2 + ݃ଷݔ௠௔௫ + ሺ ଵ݂ − ଵ݃ሻݔ௠௜ௗଷ3 + ሺ ଶ݂ − ݃ଶሻݔ௠௜ௗଶ2 + ሺ ଷ݂ − ݃ଷሻݔ௠௜ௗ       − ቆ ଵ݂ݔ௠௜௡ଷ3 + ଶ݂ݔ௠௜௡ଶ2 + ଷ݂ݔ௠௜௡ቇ, (2) 

where: 

ଵ݂ = ܽሺ݀ଵ − ݀ଷሻ + ܾሺ݀ଵଶ − ݀ଷଶሻ2 ,  ଶ݂ = ܿሺ݀ଵ − ݀ଷሻ + ܽሺ݁ଵ − ݁ଷሻ + ܾሺ݀ଵ݁ଵ − ݀ଷ݁ଷሻ,   
ଷ݂ = ܿሺ݁ଵ − ݁ଷሻ + ܾሺ݁ଵଶ − ݁ଷଶሻ2 , (3) 

ଵ݃ = ܽሺ݀ଶ − ݀ଷሻ + ܾሺ݀ଶଶ − ݀ଷଶሻ2 ,  ݃ଶ = ܿሺ݀ଶ − ݀ଷሻ + ܽሺ݁ଶ − ݁ଷሻ + ܾሺ݀ଶ݁ଶ − ݀ଷ݁ଷሻ, ݃ଷ = ܿሺ݁ଶ − ݁ଷሻ + ܾሺ݁ଶଶ − ݁ଷଶሻ2 , (4) 

݀ଵ = ௫௠௜ௗݕ − ௠௜ௗݔ௫௠௜௡ݕ − ௠௜௡ݔ , ݁ଵ = ௫௠௜௡ݕ − ௠௜௡݀ଵ,݀ଶݔ = ௫௠௔௫ݕ − ௠௔௫ݔ௫௠௜ௗݕ − ௠௜ௗݔ ,   ݁ଶ = ௫௠௜ௗݕ − ௠௜ௗ݀ଶ, ݀ଷݔ = ௫௠௔௫ݕ − ௠௔௫ݔ௫௠௜௡ݕ − ௠௜௡ݔ , ݁ଷ = ௫௠௜௡ݕ − ,௠௜௡݀ଷݔ (5) 
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ܽ = ߛ஻்ߙ ,   ܾ = ߛ஻்ߚ ,   ܿ = ଵ்ݖ − ஻ଵݖ − ଵݔ஻்ߙ + ߛଵݕ஻்ߚ ஻்ߙ, = ሺݕଷ − ଶ்ݖଵሻሺݕ − ଵ்ݖ − ஻ଶݖ + ஻ଵሻݖ − ሺݕଶ − ଷ்ݖଵሻሺݕ − ଵ்ݖ − ஻ଷݖ + ஻்ߚ ,஻ଵሻݖ = ሺݔଶ − ଷ்ݖଵሻሺݔ − ଵ்ݖ − ஻ଷݖ + ஻ଵሻݖ − ሺ்ݖଶ − ଵ்ݖ − ஻ଶݖ + ଷݔ஻ଵሻሺݖ − ߛ,ଵሻݔ = ሺݔଶ − ଷݕଵሻሺݔ − ଵሻݕ − ሺݕଶ − ଷݔଵሻሺݕ − .ଵሻݔ (6)

One can easily implement Eq. (2) in a desired programming language. 

 
a) 

 
b) 

Fig. 2. Three adjacent bores in a) forms a prism which consists of smaller prisms as shown in  
b) limited by the positions of the samples of peat in each bore 

1.2. Chemical composition and volume-to-mass ratio of peat 

Peat’s chemical composition is relative to peatland location and is mostly associated with its 
decomposition level. Table 1 shows typical intervals for the elements in peat. The values we used 
in our calculations are chosen to correspond to those found in Lithuania peatlands. 

Table 1. Typical chemical composition of peat 
The element Typical interval in percentage Values used in calculations, % 
Carbon, C 48-60 49.2 
Hydrogen, H 5-6.5 5.8 
Oxygen, O 30-42 30 
Sulfur, S < 0.2 0.1 
Nitrogen, N 0.5-3 1.5 
Ash, A 4-15 13.4 
Water, W 10-80 40 

The energy value in KJ (kilojoules) obtained by burning 1 kg peat-block is a function of 
quantity values in percentage (݌) corresponding to its chemical composition as in Eq. (7). ݁஼ , ݁ு, … denotes energetic value by mass of 1 percent element quantity for carbon, hydrogen, etc.: ܳ = ݁஼݌஼ + ݁ு݌ு − ݁ை݌ை + ௌ݁݌ௌ − ݁ௐ݌ௐ − ݁ு݌ு. (7)

The mass of peat is obtained by using volume-to-mass ratio ݇. It highly depends on the water 
level in peat. One can fix ݇ ∈ [0.15; 0.24] as it corresponds to fuel ready peat. We use ݇ = 0.217. 

 
Fig. 3. A schematic diagram of a pool of peat 
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1.3. The geometry of peatland as a set of vertical prisms 

An approximation of the geometry of a part of particular peatland in Lithuania is depicted in 
Fig. 3. The numbers are the indexes of the bores. 

The model is obtained by MATLAB software incorporating Delaunay triangulation and a 
number of numerical techniques. Such discretization enables one to evaluate additional 
information for each prism such as its energy value, chemical composition. 

1.4. Adding random noise to the data  

Now we discuss the effect of additive random noise in the coordinates of vertices of ௜ܲ௝ to ܸ 
and ܳ. Fig. 4 shows the energy value for the pool of peat depicted in Fig. 3. In each run the 
coordinates of vertices of ௜ܲ௝  are perturbed by adding the value ܾ ∙  follows Laplace distribution with ݑ ሺ0,1ሻ, i.e. Gaussian random number while in Fig. 4(b)ܰ~ݑ Fig. 4(a) corresponds to .ݑ
shape parameter 1 and displacement 0. Laplace distribution was chosen due to its sharp shape at 
the vicinity of 0 to represent more scattered perturbations. 

 
a) 

 
b) 

Fig. 4. Evaluated energy value ܳ is shown as the solid line. Small dots represents the energy value for the 
pool of peat if each coordinate is perturbed by ܾ ∙ ܷ. ܷ is a random variable following Gaussian 

distribution in a) and a random variable of Laplace distribution in b) 

Linear increase in the uncertainty of ܳ is observed as the intensity of perturbations increases. 
Calculations showed that the same conclusions apply to ܸ also. 

2. Conclusions 

Evaluating the volume and stored energy value in separate elements (prisms) is more accurate 
than just multiplying typical calorific value of peat and its mass. The developed approach employs 
Delaunay triangulation and dividing the pool of peat into vertical prisms. As there are no standard 
procedures in MATLAB to find the volume of such a solid Eq. (2) comes into the model. 

Linear increase in the uncertainty of values of ܳ  and ܸ  is observed as the intensity of 
perturbations in the coordinates of the bores and sample positions increases. The values of 
chemical composition in percentage were also perturbed by techniques mentioned in section 1.4. 
Linear increase was spotted also but of several times lower rate. 
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