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Abstract. In this paper, a fuzzy logic controller approach is presented for twin rotor 

multi-input-multi-output (MIMO) system in order to improve the control of pitch and yaw motions 

under hovering conditions. Twin rotor MIMO system resembles a helicopter model in some 

common aspects like cross coupling of pitch and yaw motions. The proposed approach is 

compared with another control strategy by simulations for a nonlinear two degrees of freedom 

twin rotor model. Set point reaching and trajectory tracking behaviours of the TRMS are analysed 

by time and step response characteristics. Results of time and step responses indicate that fuzzy 

logic controller improves set point reaching and trajectory tracking performance of the closed loop 

system. 
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1. Introduction 

Twin rotor multi-input-multi-output (MIMO) system is a fundamental model for studying the 

hovering dynamics of a helicopter having common behaviour in some aspects such as cross 

coupled pitch and yaw motions. Over the last decade, several studies have been carried out on 

modelling and controlling pitch and yaw motion of twin rotor MIMO system (TRMS) [1-13]. A 

recent investigation for TRMS is a design and application of a fault-tolerant control strategy to 

the twin rotor system manufactured by Feedback Instruments Limited [1]. Rotondo et al. had 

proposed a quasi-LPV modelling, identification and control approach for the same test rig in 

another study [7]. Wen and Lu developed a robust deadbeat control technique and applied to two 

SISO systems decoupled from the identified system [8]. Yang and Hsu presented a novel adaptive 

control approach based on the backstepping concept and demonstrated the applicability of the 

proposed control scheme with computer simulations and experiments [9]. 

Most of the time, the system model of the plant is nonlinear or unknown. TRMS includes 

nonlinear and coupled effects that disrupt pitch and yaw motions simultaneously. The intelligent 

control methods draw attention to overcome this issue. Fuzzy logic control is one of the intelligent 

control methods based on the fuzzy logic theory which was first presented by Zadeh [14]. Soh et al. 

designed and implemented a fuzzy logic controller to Quanser’s two degree of freedom helicopter 

[2]. In the proposed controller, the pitch or yaw position error and the rate of change of pitch or 

yaw position derivative error were chosen for the input variables and the output variable was the 

input control voltage of the related rotor motor that effects on pitch or yaw motion. 

Mohammadzaheri and Chen designed a neuro-predictive control with fuzzy compensator in order 

to control the yaw angle of a model helicopter [10]. The control behaviour was improved by the 

proposed controller. Tao et al. designed parallel distributed fuzzy LQR controller in order to 

control the positions of the pitch and yaw angles in TRMS [11]. The desired values were achieved 

for the yaw and pitch positions. Ramli et al. carried out an investigation on active force control to 

characterize TRMS and integrated an intelligent control method to optimize the performance of 

TRMS [12]. Recently, Jahed and Farrokhi designed an adaptive fuzzy controller to stabilize 

TRMS in a desired position [13]. The adaptive parameters of the fuzzy controller are using the 

gradient descent algorithm in order to increase the robustness. The classical fuzzy logic controllers 

act as sliding mode controllers with a boundary layer over a sliding line along the diagonal of the 

rule base. Thus, the stability of the closed loop system can be obtained from the similarity between 
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classical fuzzy logic control and sliding mode control [15]. 

The motivation of this study is originated from the growing interest in developing unmanned 

aircraft systems [16] and the similarities between TRMS and helicopter dynamics. This study 

addresses the pitch and yaw motion control of two degrees of freedom TRMS with a fuzzy logic 

approach. The control design presented in this paper is based on an active suspension control 

strategy [17] and adapted on a TRMS model. The paper is organized as follows; the nonlinear 

mathematical model of TRMS which is obtained by Lagrange method is introduced in Section 2. 

Section 3 describes the strategy and the design of the fuzzy logic controller. Then, numerical 

results are given with a comparison of another control strategy in Section 4. Finally, the paper is 

concluded in Section 5. 

2. Nonlinear mathematical model of TRMS 

Physical model of TRMS is shown in Fig. 1. It consists of two propellers placed on a lever 

arm at perpendicular planes. They are driven by two DC motors. TRMS can rotate freely around 

yaw and pitch axes. �� and �� are the pitch and yaw thrust forces generated by the propellers. The 

forces are functions of the input voltages and controlling the pitch and the yaw motions of the 

system. The rotation of the each propeller also causes cross coupling load torques on the motor 

shafts that occur at the perpendicular axes in terms of input voltages. �� and ��  are the distances 

from pitch and yaw rotors to the pivot point of the system. ��� is the center of mass length along 

TRMS body from pitch axis. �� is the force due to gravity acting through the centre of mass. 

 
Fig. 1. Physical model of TRMS. 

Lagrange’s method is used to obtain the system’s equation of motion. 	 and 
 are generalized 

coordinates corresponding to pitch and yaw angles, respectively. The equations of motion of the 

system are given in Eq. (1) and (2): 

��	� + ��	� + ����� sin	cos	
� � + �����cos	 = ����� + ����� , (1)

��
� + ��
� − 2����� sin
cos	
�	� = ����� + �����, (2)

where, �� and �� are the equivalent moments of inertia about pitch and yaw axes. �� and �� are 

the equivalent viscous damping constants about pitch and yaw axes. � is the total moving mass 

of the TRMS. ��� and ��� are thrust torque constants of pitch and yaw motor propeller actuators 

acting on pitch axis. ��� and ��� are thrust torque constants of the same actuators above yaw axis. 

�� and �� are the control voltages of pitch and yaw motors respectively. Model parameters are 

given in Table 1 [18]. 
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Table 1. Model parameters 

Parameter Value Parameter Value �� 0.0384 kg·m2 ��  0.0432 kg·m2 

��  0.8000 N·ms/rad ��  0.3180 N·ms/rad 

��� 0.2041 N·m/V ��� 0.0068 N·m/V 

��� 0.0720 N·m/V ��� 0.0219 N·m/V 

��� 0.1857 m � 1.3872 kg 

3. Fuzzy logic controller design 

The aim of the study is to improve the set point reaching and trajectory tracking behaviour of 

the TRMS for the pitch and yaw angle changes. Thus, a fuzzy logic controller with three inputs 

and a single output is designed for a single rotor by adapting from an active suspension controller 

[17]. Fuzzification, inference and defuzzification are three main steps in fuzzy logic control. The 

membership functions are described for the input and output variables by converting the crisp 

variables to fuzzy variables in the first step. Then, the linguistic expressions are used to form the 

rules that constitute the rule base in the second step. In general, these rules are in the following 

form with n inputs and a single output for a fuzzy controller: 

IF �  �s !  and �� �s !� and ... �" �s !" THEN � �s #. (3)

In the last step the fuzzy variables are converted to crisp values with an appropriate 

defuzzification method. In this study the centroid method is preferred for the defuzzification of 

the fuzzy variables, since it is widely used in the literature. 

The structure of the controller is given in Fig. 2. The inputs of the controller are chosen as 

pitch or yaw position error $%, derivative of position error $�%, and the combination of these two 

inputs &%' = $�%' + (%  $%'. The subscript ) denotes to either pitch (*) or yaw (+) positions and , 

indicates that the variables are normalized. (% is the weighting factor of the defined combination 

for each rotor. The output �% is the control voltage of the pitch or yaw motor. 

 
Fig. 2. Structure of the proposed controller 

This strategy is applied for both pitch and yaw motors independently. Block diagram of the 

closed loop control system is demonstrated in Fig. 3. 	-, 
-, 	�- and 
�- are the desired pitch and 

yaw positions and derivative of desired pitch and yaw positions, respectively. 

In order to construct the rule base, the sign of the input variables are considered on the $% vs. $�% plane as shown in Fig. 4(a) and the rules are given on the same plane in Fig. 4(b). There exits 

six regions on the $% vs. $�% plane when the input value &%' = 0 divides the plane diagonally. The 

input variable &%' = $�%' + (%  $%' owns a crucial part to satisfy the aim of the control strategy. 

When &%' takes negative values, that means either a negative pitch or yaw position error exists or 

the position error tends to be negative because of the large angular acceleration. Thus, during this 



1270. IMPROVING PITCH AND YAW MOTION CONTROL OF TWIN ROTOR MIMO SYSTEM.  

YENER TASKIN 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. JUNE 2014. VOLUME 16, ISSUE 4. ISSN 1392-8716 1653 

time the control voltage should be positive to generate positive thrust force, which rotates TRMS 

body to the related reference. Similarly, for the positive values of &%', a negative thrust force 

should be applied to the related axis of TRMS body. When &%' assumes approximately zero values, 

which agrees with the design requirements, the control inputs are approximately zero. For the 

nonzero values of &%', the other two inputs of the fuzzy controller give information about the 

location of the system states. If the states are far away from &%' = 0 line, it needs greater effort to 

reach &%' = 0 line. For example, if all the inputs are positive (1st region in Fig. 4(a)), i.e., a 

positive pitch or yaw position error exists and the related axis is moving away from reference, 

then the control input is selected to be negative big. This choice of control input forces the axis of 

TRMS body to be closer to the reference value, which results in zero position error and zero 

angular velocity for TRMS axes. Suppose, however, that the position error is positive and the 

angular velocity is negative and &%' is negative (5th region in Fig. 4(a)), then the control voltage 

is selected to be zero since the internal dynamics of the system force &%' and the position error to 

be zero, spontaneously. By using similar manner, the rule table of the controller inputs-output is 

constructed and given in Table 2. 

 
Fig. 3. Block diagram of the closed loop control system 

 
a) 

 
b) 

Fig. 4. a) The sign of the input variables, b) Graphical representation of output variable 

Fig. 5(a) and (b) demonstrate the triangular membership functions used for the input and 

output variables. NB, N, Z, P and PB represent negative big, negative, zero, positive and positive 

big, respectively. The membership functions are constructed according to the graphical 

representation of inputs and output variables as shown in Fig. 4(a) and (b). 

Input and output membership functions are set on the [–1, 1] closed interval. The crisp values 

to the corresponding fuzzy values are tuned by the scaling factors (.�%/,0,1,2). The relations between 



1270. IMPROVING PITCH AND YAW MOTION CONTROL OF TWIN ROTOR MIMO SYSTEM.  

YENER TASKIN 

1654 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. JUNE 2014. VOLUME 16, ISSUE 4. ISSN 1392-8716  

the normalized and actual values are given in Eq. (4)-(7) as shown in Fig. 3: 

& %' = & %  .�% / , (4)

$�%'
� $�%.�% 0

, (5)

$%'
� $%.�% 1

, (6)

�% � �%'
.�% 2

. (7)

 

                        a) 
 

              b) 

Fig. 5. a) Membership functions of input variables; b) Membership functions of output variable 

Table 2. Rule table of the controller 

Inputs Output 

& %'
 $�%'

 $%'
 �%'

 

P P P NB 

P P Z N 

P P N Z 

P Z P N 

P N P Z 

Z P N Z 

Z Z Z Z 

Z N P Z 

N P N Z 

N Z N P 

N N P Z 

N N Z P 

N N N PB 

The rules are arranged by applying certain control inputs to render &%'
 to be zero. Thus, the 

states are kept in the region and internal dynamics of the system render the error and derivative of 

error to be zero. Therefore, all the states of the system are regulated to be zero by the constructed 

rule table. In fact, it is possible to write 27 rules when three inputs are used. However, some of 

them are not physically realizable. For instance, if the position error and the derivative of the 

position error are both negative, the first input variable, &%'
, cannot have a positive value. Thus, 

certain input combinations are not used during the construction of the rule table, which reduces 

the size of the rule base and decreases the computation time. 

4. Numerical results 

In order to evaluate the set point reaching and trajectory tracking performances of the proposed 

controller, a square and a sine waveforms are defined consecutively as the reference trajectory for 

pitch and yaw motions. Then, the proposed fuzzy controller is compared with another controller 

strategy for various cases under different reference trajectories. The other controller includes the 

combination of a feed-forward controller and a LQR PID position controller (FF+LQR+PID) 

which is given in the laboratory manual of Quanser’s two degrees of freedom helicopter [18]. The 
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structure and the parameters of feed-forward and LQR PID position controllers are given in 

Appendix. In Table 3, scaling and weighting factors of the proposed fuzzy controller are given. 

They are tuned by trial and error.  

Table 3. Proposed controller parameters 

Parameter Value .�� / , .�� /  1/3 

.�� 0 , .�� 0  1/40 

.�� 1 , .�� 1  9/10 

.�� 2 , .�� 2  4000 

(�, (� 2 

Three cases are considered in the comparison of the two controllers. Each case includes 

different trajectory combinations. In all cases the twin rotor is at the starting point where the pitch 

and yaw angle initial values are set to zero radians. In the first case, the desired pitch and yaw 

tracking path is chosen as a square and a sine waveforms consecutively in Fig. 6, whose frequency 

and amplitude are 0.025 Hz and 1 rad for the total duration of 80 s. 

 
a) 

 
b) 

Fig. 6. Case 1: Time responses for a) Pitch motion, b) Yaw motion 

For the second and third cases, only one tracking path is chosen as above mentioned 

waveforms and the other desired tracking path is set to zero radians in Fig. 7 and 8. The set point 

reaching and trajectory tracking behaviour can be observed by time responses in Fig. 6-8. In all 

cases, the proposed fuzzy controller demonstrates satisfactory set point and trajectory tracking 

performance. When the time responses of both controllers are examined, it is observed that the 

rise times are almost preserved for pitch and yaw motions in all cases and moreover the proposed 

controller provides shorter settling times without overshoot. On the one hand, in Fig. 7(b), while 

the TRMS is tracking the pitch trajectory and also trying to maintain the yaw reference at zero 

radians, the pitch thrust forces cause cross coupling loads on the yaw motion for the compared 

controller that can be observed at the beginning of the yaw motion between 0 and 10 seconds, 

between 20 and 30 seconds and between 40 and 80 seconds. The same effect can be observed in 
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Fig. 8(a) with a little difference. Yaw thrust forces causes less cross coupling loads when 

compared to pitch trust forces. These effects are observed and valid for the comparison controller. 

On the other hand, the proposed controller prevents and minimizes the cross coupling effects that 

can be observed in Fig. 7(b) and Fig. 8(a) as well. 

 
a) 

 
b) 

Fig. 7. Case 2: Time responses for a) Pitch motion, b) Yaw motion 

 
a) 

 
b) 

Fig. 8. Case 3: Time responses for a) Pitch motion, b) Yaw motion 
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Step response characteristics for all cases are obtained from the square waveform parts of the 

time responses for the first 20 s duration of the simulations and given in Table 4. As it is observed 

from the time responses, the rise times of all cases for both methods are almost similar. There are 

no overshoots occurred in the proposed controller’s results. The steady-state error percentages of 

the proposed controller for all cases are greater than the compared ones, but they are less than  

0.7 % and negligible. It is also noticed that the settling times and mean-squared errors are 

decreased significantly in all cases by the proposed controller. 

A disturbance input as shown in Fig. 9 is applied to the forward path of the horizontal and 

vertical control loops in order to evaluate the controller’s robustness against external disturbances. 

Time responses of pitch and yaw motions are simulated for Case 1 and the results are shown in 

Fig. 10(a) and (b). While the LQR based controller is affected by the disturbance, the proposed 

controller shows better external disturbance rejection and more robustness. The effects of the 

external disturbance can be clearly seen, if Fig. 6(a), (b) and Fig. 10(a), (b) are compared. The 

position error of the LQR based controller is increased as the disturbance is applied. On the other 

hand the proposed controller preserves the tracking without any distortion. 

 
Fig. 9. Applied disturbance to each axis 

 
a) 

 
b) 

Fig. 10. Case 1: Time responses for a) Pitch motion, b) Yaw motion under external disturbance 
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Table 4. Comparison of the step response characteristics 

Pitch (5) and yaw 

(6) motion 

characteristics 

Case 1 Case 2 Case 3 

Fuzzy FF+LQR+PID Fuzzy FF+LQR+PID Fuzzy FF+LQR+PID 

Rise time (s) 
5 1.222 1.282 1.226 1.289 – – 

6 1.188 0.978 – – 1.193 0.953 

Overshoot 

(%) 

5 – 28.51 – 28.85 – – 

6 – 20.20 – – – 27.88 

Settling time 

(s) 

5 1.596 8.410 1.600 8.454 – – 

6 1.529 7.069 – – 1.531 6.816 

Steady-state 

error (%) 

5 0.3730 0.0456 0.3728 0.0448 0.6840 0.0001 6 0.1151 0.0035 0.1151 0.0022 0.1932 0.0011 

Mean-

squared error 

(rad2) 

5 0.0149 0.0287 0.0152 0.0295 0.00005 0.00006 

6 0.0148 0.0225 0.000002 0.0009 0.0151 0.0272 

5. Conclusions 

A fuzzy logic controller adaptation on a twin rotor MIMO system is introduced. The proposed 

controller is compared with an LQR based control strategy in order to show improvements of the 

set point reaching and trajectory tracking performance. The numerical results show that the fuzzy 

controller exhibits a promising behaviour and satisfactory set point reaching and trajectory 

tracking performance in terms of improving the control of pitch and yaw motions simultaneously. 

The cross coupling effect is also reduced and better control with good robustness against external 

disturbance is provided by the proposed controller. 
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Appendix 

The structure and the parameters of feed-forward and LQR PID position controllers 

The equations of motion of the system given in Eq. (1) and (2) are linearized about zero and 

the linear state space model is given in Eq (a.3) to (a.6). The state vector of TRMS is defined as: 

�7 = 8	 
 	� 
� 9, (a.1)

+7 = 8	 
 	� 
� 9, (a.2)�� = : � + � �, (a.3)+ = ; � + < �, (a.4)

:  =

=>
>>
>>
?0 0 1 00 0 0 1
0 0 − ���� + ����� 0
0 0 0 − ���� + ����� BC

CC
CC
D

,   �  =
=>>
>>>
? 0 00 0����� + ����� ����� + ���������� + ����� ����� + ����� BCC

CCC
D
, (a.5)

; = E1 0 0 00 1 0 00 0 1 00 0 0 1F ,   <  = E0 00 00 00 0F,   �-7 = 8	- 
- 0 09, (a.6)

is the desired state vector. The system state vector is augmented to include the integrals of pitch 

and yaw states: 

�%7 = 8	 
 	� 
� ∫ 	 HI ∫ 
 HI9. (a.7)

Using the feedback law: 

� = −� �% , (a.8)

is calculated by minimizing the cost function: 

� = J �%7K �%
L

M + �7N � HI. (a.9)

The control gain is expressed as: 
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� = OP , P ,� P ,Q P ,R P ,S P ,TP�, P�,� P�,Q P�,R P�,S P�,TU. (a.10)

The state feedback controller is defined as: 

V����W = �XYZ�- − �[ + \% + V�]]^ W,   �XY = OP , P ,� P ,Q P ,RP�, P�,� P�,Q P�,RU, (a.11)

is the proportional-derivative control gain, and the integral control is: 

\% = _∫ P ,S`�-/ − � aHI + ∫ P ,T`�-0 − ��aHI
∫ P�,S`�-/ − � aHI + ∫ P�,T`�-0 − ��aHIb,    �]] = 1,   �]] = �]]�����cosZ�-/[

��� , (a.12)

is the nonlinear feed-forward control, which compensates for the gravitational torque. The PID 

control gains are calculated using the Linear Quadratic Regular scheme. The weighting matrices 

are taken as: 

K =
=>
>>
>?
200 0 0 0 0 00 150 0 0 0 00 0 100 0 0 00 0 0 200 0 00 0 0 0 50 00 0 0 0 0 50BC

CC
CD ,    N = V1 00 1W. (a.13)

The control gain is calculated as: 

� = V 18.9 1.98 7.49 1.53 7.03 0.77−2.22 19.4 −0.45 11.9 −0.77 7.03W. (a.14)

 


