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Abstract. The fault diagnosis of rotating machinery has crucial significance for the safety of 

modern industry, and the fault feature extraction is the key link of the diagnosis process. As an 

effective time-frequency method, Empirical Mode Decomposition (EMD) has been widely used 

in signal processing and feature extraction. However, the mode mixing phenomenon may lead to 

confusion in the identification of multi frequency signals and restricts the applications of EMD. 

In this paper, a novel method based on Multi-Differential Empirical Mode Decomposition 

(MDEMD) was proposed to extract the energy distribution characteristics of fault signals. Firstly, 

multi-order differential signals were deduced and decomposed by EMD. Then, their energy 

distribution characteristics were extracted and utilized to construct the feature matrix. Finally, 

taking the feature matrix as input, the classifiers were applied to diagnosis the existence and 

severity of rotating machinery faults. Simulative and practical experiments were implemented 

respectively, and the results demonstrated that the proposed method, i.e. MDEMD, is able to 

eliminate the mode mixing effectively, and the feature matrix extracted by MDEMD has high 

separability and universality, furthermore, the fault diagnosis based on MDEMD can be 

accomplished more effectively and efficiently with satisfactory accuracy. 

Keywords: empirical mode decomposition (EMD), energy distribution, multi-differential 

empirical mode decomposition (MDEMD), fault diagnosis, rotating machinery. 

1. Introduction 

Large rotating machinery is the essential part of many industrial applications, and the 

requirement of its safe and uninterrupted operation has become more significant. It is obvious that 

there is an increasing demand for reliable failure detection and fault diagnosis [1]. Several 

condition monitoring techniques such as vibration, acoustic and temperature measurements have 

been investigated for fault feature extraction, and among these techniques vibration measurement 

and analysis are paid more attention [2-5]. When faults of rotating machinery occur, the vibration 

signals will present an amplitude modulation phenomenon combining the characteristic 

frequencies of different defects highly correlative with the structure dynamics, thus, the vibration 

analysis and feature extraction have great importance for rotating machinery fault diagnosis. 

In previous studies, many signal processing methods had been developed to mining the fault 

characteristic information, such as time-domain analysis, frequency-domain analysis, wavelet 

transform and empirical mode decomposition. Classical time or frequency domain methods, 

including the time-domain averaging [6], time-series analysis [7] and frequency spectral analysis 

[8], were proved to be effective for stationary vibration signals. However, as the vibration signal 

usually presents non-stationary characteristics in time-domain and diverts energy to a wide 

spectrum in frequency-domain, these traditional methods cannot sufficiently extract the diagnostic 

information. Wavelet transform (WT) is a powerful time-frequency method for non-stationary 

signal analysis by describing the signals on multiple scales with different time-frequency 

resolution, and it has been widely employed to investigate many kinds of signals [9-12]. The 

wavelet bases and the decomposition scales are determined in WT, and the frequency components 

of the decomposition results are only related to the sample frequency, which makes the precision 

of WT highly influenced by the wavelet selection and restricts its application [13]. 
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Empirical mode decomposition (EMD) is another time-frequency signal processing technique, 

but different from WT, EMD is a self-adaptive method, which can decompose a non-stationary 

signal into a series of intrinsic mode functions (IMFs) based on the local characteristics of the 

signal [14]. In recent years, EMD has been becoming a research focus in signal processing and 

fault diagnosis [15-25]. Many researchers applied EMD and Hilbert spectrum in the mechanical 

faults diagnosis and achieved good results [15-18]. A combination of EMD with other signal 

processing techniques, such as envelope analysis, kernel independent component analysis (KICA), 

instantaneous dimensionless frequency (DLF) normalization and autoregressive (AR) model, also 

showed merit in vibration signal processing and feature extraction [19-22]. Meanwhile, according 

to the specific problems in different application areas, plenty kinds of promotions and 

modifications including boundary extension, ensemble empirical mode decomposition (EEMD), 

Multivariate EMD, etc, are proposed to improve the performance of EMD and extended its 

applications [23-25] vastly. 

But unfortunately, the mode mixing phenomena of EMD caused by the signal intermittency 

and noise disturbance is still one major drawback [26], which may lead to confusion in the 

extracted features of different faults. To eliminate this defect, in this paper we proposed a feature 

extraction process based on multi-differential empirical mode decomposition (MDEMD), which 

employed the EMD to not only the original signal, but also its multi-differential signals, and 

extracted the energy distribution as the signal characteristics and fault features from the obtained 

IMFs. As the energy distribution of different frequency components would vary under differential 

operations, the MDEMD could obtain the fault features with high separability and eliminate the 

mode mixing phenomena indirectly. To verify the superiority of the proposed method MDEMD, 

simulative and practical experiments were implemented respectively, and taking the extracted 

features as input vectors several common classifiers were utilized to process the fault diagnosis. 

The rest of the paper is organized as follows: In Section 2, the proposed method 

multi-differential empirical mode decomposition (MDEMD) is detailed described after the 

introduction of EMD and energy distribution extraction. In Section 3, simulation experiments are 

carried out and the effectiveness of MDEMD is verified. In Section 4, MDEMD is applied into 

the fault diagnosis for rotating machinery, and the results and discussion are given. Section 5 

summarizes the conclusions of this work. 

2. Multi-differential empirical mode decomposition 

2.1. Empirical mode decomposition 

EMD is a newly self-adaptive time-frequency technique for non-linear and non-stationary 

signal processing, which is able to decompose a complex multicomponent signal into a set of 

intrinsic mode functions (IMFs) satisfying the following two requirements: (1) In the whole set 

data, the number of extremum and the number of zero-crossings must either be equal or different 

at most by one; (2) At any point, the mean of the envelope defined by local maxima and the 

envelope defined by the local minima are zero [14]. Suppose a signal as 𝑥(𝑡),  and its 

decomposition procedure is described as follows. 

Step 1: Set the original signal 𝑟(𝑡) = 𝑥(𝑡), and initialize the iteration tag 𝑖 = 1; 

Step 2: Find all the local maxima and minima of 𝑟(𝑡). 
Step 3: Construct the upper envelope 𝑢(𝑡)  and lower envelope  𝑙(𝑡)  respectively from the 

extracted local maxima and minima via the cubic spline curve fitting. 

Step 4: Compute the local mean 𝑚(𝑡) = [𝑢(𝑡) + 𝑙(𝑡)]/2, and subtract 𝑚(𝑡) from the original 

signal 𝑟(𝑡) to obtain the first component ℎ(𝑡) = 𝑟(𝑡) − 𝑚(𝑡). 
Step 5: Set the new 𝑟(𝑡) = ℎ(𝑡), repeat Step 2 to 4 until ℎ(𝑡) meets the requirement of IMF, 

then design 𝑐𝑖(𝑡) = ℎ(𝑡) as the 𝑖th IMF. 

Step 6: Subtract 𝑐𝑖(𝑡)  from 𝑟(𝑡)  to obtain the new 𝑟(𝑡) = 𝑟(𝑡) − 𝑐𝑖(𝑡) , if the new 𝑟(𝑡) 
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satisfies the stopping criteria, design 𝑟(𝑡) as the residue of the signal and stop decomposition 

process; otherwise, set 𝑖 = 𝑖 + 1, and repeat from Step 2. 

After the decomposition procedure, the investigated signal can be expressed as follows: 

𝑥(𝑡) =∑𝑐𝑖(𝑡)

𝑛

𝑖=1

+ 𝑟(𝑡), (1) 

where 𝑛 is the amount of IMFs, 𝑐𝑖(𝑡) is the 𝑖th IMF, and 𝑟(𝑡) is the residue. 

2.2. Energy distribution extraction 

As mentioned before, the non-stationary vibration signal usually contains a wide spectrum of 

frequency components, which could be decomposed into a sequence of IMFs with different 

frequency scales self-adaptably by EMD. Theoretically, the decomposition result is only related 

to the inherent characteristics of the signal itself, and each IMF contains a different band of 

frequency components. Through the analysis of IMFs, the implied characteristic information can 

be revealed, and in this paper, energy distribution is extracted as the signal features. 

The energy distribution obtained by estimating the total energy of the signal and energy 

percentage of each IMF is able to present the frequency construction of the signal. To extract the 

energy distribution, firstly, the energy of each IMF is computed: 

𝐸𝑖 = ∫ |𝑐𝑖(𝑡)
2|𝑑𝑡

+∞

−∞

,   𝑖 = 1,2, … , 𝑛. (2) 

Then, the energy percentage can be evaluated: 

𝐸𝑃𝑖 =
𝐸𝑖

𝑠𝑢𝑚(𝐸𝑖)
,   𝑖 = 1,2, … , 𝑛. (3) 

Finally, the total energy of all the IMFs defined as 𝐸𝑇 = 𝑠𝑢𝑚(𝐸𝑖) is combined with the energy 

percentage to construct the feature vector 𝐅𝐕 = [𝐸𝑇, 𝐸𝑃1, 𝐸𝑃2, … , 𝐸𝑃𝑛]. It can be noticed that the 

extracted feature vector 𝐅𝐕 is able to represent the characteristics of a signal in both macroscopic 

(total energy 𝐸𝑇) and microscopic (energy percentage 𝐸𝑃𝑖) ways. Usually, when different signals 

are investigated, the amount of obtained IMFs can hardly be the same, and a certain number of the 

chosen IMFs should be decided. In previous studies, it is found out that the most energy of the 

signal are contained in the first few IMFs, therefore, for single signal analysis, the number 𝑚 is 

chosen if the sum energy percentage of the first 𝑚 IMFs is larger than 95 %, and for multi signals 

analysis, the largest 𝑚 is utilized for all the signals, and the feature vector can be expressed as 

𝐅𝐕 = [𝐸𝑇, 𝐸𝑃1, 𝐸𝑃2, … , 𝐸𝑃𝑚]. Particularly, when the amount of IMFs is smaller than 𝑚, 0 is 

assigned to the rest of the vectors. 

2.3. Multi-differential EMD and feature extraction 

The feature extraction process based on EMD and energy distribution is applicable to signal 

identification and fault diagnosis, however, its effectiveness is restricted by the mode mixing of 

EMD. To illustrate this pheromone, a simple example is shown below. 

Define two different signals 𝑥1 and 𝑥2 as follows: 

{
𝑥1(𝑡) = sin(2𝜋𝑡) + 0.05 ⋅ sin(20𝜋𝑡),

𝑥2(𝑡) = sin(2𝜋𝑡) + 0.2 ⋅ sin(4𝜋𝑡) + 0.05 ⋅ sin(20𝜋𝑡).
 (4) 
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Obviously, 𝑥2  has more frequency components than 𝑥1 , and they are easy to distinguish. 

Utilize EMD and energy distribution extraction to analyze these two signals, and the IMFs and 

feature vector 𝐅  are respectively listed in Fig. 1 and Table 1. It can be noticed that 𝑥1  is 

decomposed into two IMFs: the first one is the higher frequency component, and the other one is 

the main component, which means the two different frequency components implied in 𝑥1 can be 

separated from each other quite well by EMD. On the other hand, 𝑥2 is also decomposed into two 

IMFs, but the first two components of 𝑥2 are both contained in IMF2, which suggests the signal 

𝑥2 cannot be decomposed sufficiently by EMD. The undesirable consequence of the mode mixing 

pheromone is revealed in Table 1, from which it can be seen that the extracted feature vectors of 

𝑥1 and 𝑥2 based on EMD are nearly the same, and obviously, the two different signals cannot be 

identified by these feature vectors. 

Table 1. The extracted feature vectors of the signal 𝑥1 and 𝑥2 

Signal 
Features 

𝐸𝑇 𝐸𝑃1 𝐸𝑃2 

𝑥1 1.50×103 0.0025 0.9975 

𝑥2 1.56×103 0.0024 0.9976 

 

 
(a) 

 
(b) 

Fig. 1. The EMD result of the signal (a) 𝑥1 and (b) 𝑥2 

The most fundamental reason causing the mode mixing is the local extremum selection. One 

major procedure during the EMD process is calculating the upper and lower envelopes based on 

the local extremum, and it can be noticed that the amount and the location of the local extremum 

decides the main frequency components of the current IMF directly. Whether two components 

can be separated depends on the information of the local extremum. When the frequencies of two 

components are close, or the amplitude of the higher frequency component is low, the higher 

frequency component may not generate the local extremum reflecting the real frequency 

distribution and is hardly to decompose. As is shown in Fig. 1(b), IMF2 contains two components 

𝑐1  and 𝑐2 with close frequencies 1 and 2 Hz, and the amplitude of 𝑐2 is much lower, thus 𝑐1 only 

influences the location of the local extremum, but cannot generate new local extremum, and they 

haven’t been separated. 

To eliminate the mode mixing, differential algorithm is introduced into EMD. Theoretically, 

the differential signal has such properties: (1) it won’t change the frequencies of all the 

components; (2) it will increase the amplitude of component according to its frequency. It is 

noteworthy that the amplitude increase is linearly related to the frequency of the component, and 
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according to the previous discussions, such properties are very helpful for improving the EMD. 

The higher frequency component with low amplitude will be strengthened in the differential signal, 

and may be able to generate new local extremum. The example above is utilized again to 

demonstrate the effectiveness of the differential EMD. First, the differential signals of 𝑥1 and 𝑥2 

are calculated by central difference as follows: 

𝑥′ =
𝑑𝑥

𝑑𝑡
=
𝑥(𝑡 + Δ𝑡) − 𝑥(𝑡 − Δ𝑡)

2Δ𝑡
, (5) 

where Δ𝑡 presents a small increments of 𝑡, and then, the feature extraction process is carried out 

with the differential signals. 

The result is shown in Fig. 2 and Table 2. Although an undesirable fake IMF appears in 

Fig. 2(b), the actual components implied in the differential signal of 𝑥2 are decomposed into three 

IMFs effectively, and extracted feature vectors listed in Table 2 can be noticed to have high 

separability. Additionally, when the EMD result of the 1st-order differential signal still cannot 

separate the different frequency components, the 2nd-order and higher-order differential signals 

could be utilized: 

𝑥(𝑛) =
𝑑𝑛𝑥

𝑑𝑡𝑛
=
𝑥(𝑛−1)(𝑡 + Δ𝑡) − 𝑥(𝑛−1)(𝑡 − Δ𝑡)

2Δ𝑡
. (6) 

 

 
(a) (b) 

Fig. 2. The differential EMD result of the signal (a) x1 and (b) x2 

Table 2. The extracted feature vectors of the signal 𝑥1 and 𝑥2 by differential EMD 

Signal 
Features 

𝐸𝑇 EP1 EP2 EP3 EP4 

𝑥1 6.10×104 0.2000 0.8000 0.0000 0.0000 

𝑥2 5.53×104 0.1939 0.1150 0.6688 0.0023 

Based on the above studies, a novel Multi-Differential EMD (MDEMD) method is proposed 

to improve the effectiveness of the signal decomposition and feature extraction by combining the 

energy distribution characteristics of multi-order differential signals, and the flow chart of 

MDEMD is shown in Fig. 3. Multi-order differential signals are obtained, and the energy 

distribution features of these signals are extracted respectively. To represent the signal more 
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comprehensively, all the extracted feature vectors are combined to construct the feature matrix. 

During the MDEMD process, the higher order is chosen, the more frequency information could 

be obtained, but the high order differential operation may lead to serious signal distortion. 

Therefore, the max order of multi-order differential signal 𝑁 should be decided by the complexity 

of the investigated signal. 

Original signal

Original signal 1st-order differential signal Nth-order differential signal

Decomposition by EMD Decomposition by EMD Decomposition by EMD

Energy distribution 

calculation 

Energy distribution 

calculation 

Energy distribution 

calculation 

Feature vector extraction Feature vector extraction Feature vector extraction

Combine all the extracted feature vectors

to construct the feature matrix

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

 
Fig. 3. The flow chart of MDEMD 

3. Simulation experiment 

3.1. Simulation signals 

In this section, artificial signals are constructed to simulate the vibration signals of rotating 

machinery, and the simulation experiment is implemented to verify the superiority of the proposed 

MDEMD method. A set of signal components are defined in Eq. 4, and a certain combination of 

them can simulate the vibration response of the corresponding fault [18]. 

{
 
 

 
 
𝑒1(𝑡) = sin(2𝜋 ⋅ 60𝑡),

𝑒2(𝑡) = (1 + 0.1sin(2𝜋 ⋅ 15𝑡))sin(2𝜋 ⋅ 120𝑡 + 0.2sin(2𝜋 ⋅ 10𝑡)),

𝑒3(𝑡) = sin(2𝜋 ⋅ 240𝑡),

𝑒4(𝑡) = sin(2𝜋 ⋅ 360𝑡),

𝑒5(𝑡) = noise,

 (7) 

where 𝑒1(𝑡) is a sinusoidal signal with the frequency of 60 Hz representing the 1𝑋 component, 

𝑒2(𝑡)  is an intra-wave modulated signal representing the 2𝑋  harmonic component, 𝑒3(𝑡)  and 

𝑒4(𝑡) are both sinusoidal signals representing the 4𝑋 and 6𝑋 harmonic components, and 𝑒5(𝑡) is 

the noise signal. Previous researches have found that the 1𝑋 vibration is often caused by mass 

unbalance, and the excitation source of 2𝑋 vibration harmonic is usually misalignment, while the 

4𝑋 and 6𝑋 vibration harmonic components constantly appear in the response of rubbing fault. In 

the simulation experiment, four classes of signals with different combinations of 𝑒1(𝑡) − 𝑒5(𝑡) 
are established as follows: 

{
 

 
𝑥1(𝑡) = 𝑒1(𝑡) + 𝑒5(𝑡),

𝑥2(𝑡) = 𝑒1(𝑡) + 𝐴 ⋅ 𝑒2(𝑡) + 𝐶 ⋅ 𝑒4(𝑡) + 𝑒5(𝑡),

𝑥3(𝑡) = 𝑒1(𝑡) + 𝐵 ⋅ 𝑒3(𝑡) + 𝐶 ⋅ 𝑒4(𝑡) + 𝑒5(𝑡),

𝑥4(𝑡) = 𝑒1(𝑡) + 𝐴 ⋅ 𝑒2(𝑡) + 𝐵 ⋅ 𝑒3(𝑡) + 𝐶 ⋅ 𝑒4(𝑡) + 𝑒5(𝑡),

 (8) 
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where 𝐴 is a random number in the range of [0.3, 0.4], 𝐵 is a random number in the range of 

[0.28, 0.32], and 𝐶 is a random number in the range of [0.09, 0.11]. Forty samples for each class 

are produced with different 𝐴, 𝐵, 𝐶, 25 of which are training samples and the other are testing 

samples. Fig. 4 gives a set of examples of the four classes. 

 
Fig. 4. Examples of the four classes: (a) 𝑥1, (b) 𝑥2, (c) 𝑥3 and (d) 𝑥4 

3.2. Signal decomposing and feature extraction analysis 

In the simulation experiment, the max-order of MDEMD is set to 2, and EMD is applied to the 

original and multi-order differential signals. As the amplitude of signal would change after the 

differential operation, in order to make the extracted energy distribution more convincing, the 

differential signal is divided by a determined factor equals to 120π, so that the amplitude of 1𝑋 

component would keep invariant. The main IMFs obtained by EMD of the example signals are 

respectively shown in Fig. 5 to 7. 

 
Fig. 5. The decomposition result of the original signals 
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Fig. 6. The decomposition result of the 1-order differential signals (1-ODS) 

   
Fig. 7. The decomposition result of the 2-order differential signals (2-ODS) 

In Fig. 5 it is revealed that multiple frequency components contained in the simulation samples 

cannot be decomposed sufficiently by EMD and the mode mixing exists evidently. For example, 

the IMF3 of signal 𝑥2(𝑡)  and 𝑥4(𝑡)  contains 1𝑋  and 2𝑋  components, and the IMF2 of 𝑥1(𝑡) 
contains 4𝑋 and 6𝑋 harmonic components. In Fig. 6 and 7, the amplitude of higher frequency 

components rises more obviously through the differential process, and the influence of noise 

signals becomes more serious. However, although the smoothness of the signals decreases, the 

multiple frequency components implied in the multi-order differential signals can be decomposed 

more sufficiently.  

Based on decomposition results, the feature matrixes of energy distribution are extracted and 

parts of them are listed in Table 3. Through comparison of the feature vectors extracted from 

multi-order differential signals, it is revealed that the energy distributions of four original signals 

are quite similar to each other, while the energy distributions of 1- and 2-order differential signals 

have quite big differences. 
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Table 3. The extracted feature matrixes of the four examples 

Signal 
Features matrix 

𝐸𝑇 𝐸𝑃1 𝐸𝑃2 𝐸𝑃3 𝐸𝑃4 𝐸𝑃5 𝐸𝑃6 𝐸𝑃7 𝐸𝑃8 

𝑥1 

Original 1.00×103 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 

1-ODS 9.47×102 0.010 0.002 0.001 0.222 0.761 0.001 0.001 0.000 

2-ODS 2.81×104 0.838 0.093 0.018 0.006 0.003 0.023 0.017 0.001 

𝑥2 

Original 1.17×103 0.000 0.010 0.987 0.001 0.001 0.001 0.000 0.000 

1-ODS 1.18×103 0.008 0.012 0.206 0.334 0.436 0.002 0.002 0.000 

2-ODS 3.68×104 0.598 0.063 0.083 0.189 0.049 0.017 0.001 0.000 

𝑥3 

Original 9.84×102 0.027 0.080 0.890 0.002 0.000 0.000 0.001 0.000 

1-ODS 1.52×103 0.005 0.015 0.372 0.224 0.377 0.003 0.001 0.003 

2-ODS 3.79×104 0.486 0.048 0.066 0.292 0.088 0.017 0.002 0.001 

𝑥4 

Original 1.17×103 0.009 0.080 0.907 0.001 0.002 0.001 0.000 0.000 

1-ODS 1.96×103 0.005 0.008 0.393 0.279 0.107 0.204 0.001 0.003 

2-ODS 4.10×104 0.506 0.062 0.025 0.273 0.100 0.019 0.013 0.002 

To verify the separability of the extracted features, Support Vector Machine (SVM), which is 

a common pattern recognition method based on the structural risk minimization (SRM) principle 

[27], is applied to identify the four classes of simulation signals with the energy distribution 

characteristics respectively obtained by the original EMD, 1- and 2-order MDEMD. The 

identification results are summarized in Table 4. By the original EMD method, the identification 

rates of the four classes are quite different and the average identification rates of training and 

testing samples are respectively 67.7 and 65.3 %, which are too low for the signal identification. 

By the 1-order MDEMD, all the identification rates are significantly improved, and the average 

identification rates rise to 93.9 and 94.2 %. By the 2-order MDEMD, the accuracy is further 

improved, and the identification rates of three classes have reached 100 %. The simulation 

experimental result verifies the separebility of the extracted features and demonstrates that the 

proposed MDEMD method is suitable for signal identification. 

Table 4. The identification results 

Class of 

signals 

Accuracy of EMD Accuracy of 1-order MDEMD Accuracy of 2-order MDEMD 

Training Testing Training Testing  Training  Testing  

𝑥1 48.0 % 50.6 % 86.4 % 85.3 % 100 % 100 % 

𝑥2 82.4 % 82.0 % 100 % 100 % 100 % 100 % 

𝑥3 80.0 % 72.0 % 89.2 % 91.3 % 92.4 % 92.0 % 

𝑥4 60.4 % 56.7 % 100 % 100 % 100 % 100 % 

Average 67.7 % 65.3 % 93.9 % 94.2 % 98.1 % 98.0 % 

4. Applications in fault diagnosis for rotating machinery 

4.1. Data collection 

Rolling element bearings are the major part of most rotating machineries, and detecting and 

diagnosing the existence and severity of bearing faults is significant to prevent the rotating 

mechanical system from fatal breakdowns. In this section, the proposed MDEMD method is 

applied to feature extraction and fault diagnosis for rolling element bearings. 

Part of the bearings vibration dataset collected by K. A. Loparo [28] is used in this paper. 

Three faults including outer race fault, inner race fault and ball fault, with the same defect sizes 

of 0.007 or 0.021 in, were respectively introduced into the drive-end bearing of the motor, which 

were tested under four different loads, 0, 1, 2 and 3 hp and the vibration data was collected at 

12000 samples/s and 24000 samples/s by the installed sensors. In this paper, the vibration data 

collected at 12000 samples/s under 0 hp load with the defect sizes of 0.007 or 0.021 in was utilized 

and divided into 100 sub-signals with 4096 data points for each group. The produced 6 classes of 
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samples covering 6 types of faults are listed in Table 5, and their time responses are illustrated in 

Fig. 8. 

Table 5. Description of bearing fault dataset 

The number of fault samples Defect size (in) Position of fault Label of class 

100 0.007 Out race 𝐹1 

100 0.007 Inner race 𝐹2 

100 0.007 Ball 𝐹3 

100 0.021 Out race 𝐹4 

100 0.021 Inner race 𝐹5 

100 0.021 Ball 𝐹6 

 
Fig. 8. Time series of fault signals: (a) ball fault with 0.007 in; (b) inner race fault with 0.007 in;  

(c) outer race fault with 0.007 in; (d) ball fault with 0.021 in;  

(e) inner race fault with 0.021 in; (f) outer race fault with 0.021 in 

4.2. Feature extraction and fault diagnosis 

Based on the theories above, the energy distribution characteristics of all the samples are 

extracted from the original and multi-order differential signals respectively, and the length of the 

extracted feature vectors is set to 10 containing 1 𝐸𝑇 and 9 𝐸𝑃𝑠. After feature extraction, the 

obtained feature matrixes were scaled to be in [0, 1]. 

The fault diagnosis experiments were carried out with the fault features respectively extracted 

by the original EMD, 1- and 2-order MDEMD, and half of the samples for each class were 

randomly selected as training data leaving the rest as testing data. Furthermore, the four most 

common classifiers including k-Nearest Neighbor algorithm (kNN), Radial Basis Function (RBF) 

Neural Network, Support Vector Machine (SVM) and Probabilistic Neural Network (PNN) were 

applied to identify the 6 classes of faults, and the experiment of each method was repeated for 30 

times. 

Table 6 shows the comparison results of different diagnostic methods, and the identification 

rates of training and testing samples are reported respectively. It is clear that, the testing accuracy 

of 1-order MDEMD is much higher than the original EMD and reaches to more than 98.70 %, 

while the identification rate of 2-order MDEMD is further increased to more than 99 %. It is also 

noticed that the identification accuracies of different classifiers varied in a small range. The 

minimum testing accuracy by using original EMD is 92.11 % for RBF while the maximum is 

95.68 % for PNN, and the variance is 3.57 %. By using 1-order MDEMD, the minimum and 

maximum testing accuracies are respectively 98.70 and 99.33 % corresponding to RBF and PNN, 

and the variance deduced to only 0.63 %. Especially, by utilizing 2-order MDEMD the lowest 
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accuracy is 99.04 % for kNN, and the identification rates of SVM and PNN are nearly 100 %. 

Therefore the effectiveness and universality of the proposed MDEMD are demonstrated. 

Table 6. The fault identification rates of different methods 

Method 

Identification rate of training samples (%) Identification rate of testing samples (%) 

Original 

EMD 

1-order 

MDEMD 

2-order 

MDEMD 

Original 

EMD 

1-order 

MDEMD 

2-order 

MDEMD 

kNN 95.63 98.76 99.27 94.47 98.72 99.04 

RBF 93.54 98.91 99.81 92.11 98.70 99.46 

SVM 94.93 99.25 99.95 94.56 99.03 99.80 

PNN 98.50 100 100 95.68 99.33 99.86 

Meanwhile, it is noteworthy that the higher order for MDEMD would produce lager feature 

matrix, and the time consumption would increase accompanied with the accuracy, thus, the 

selection of the proper order depends on the balance between the requirements of the accuracy 

and efficiency. For the fault diagnosis of rotating machinery, the recommended max order is 2. In 

summary, the comparison results reflect that MDEMD can stably extract the fault features with 

high separabilities and the fault diagnosis can be completed with satisfactory accuracy by using 

these fault features. It is feasible for fault diagnosis of rotating machinery. 

5. Conclusion 

In this paper, a novel method of feature extraction based on Multi-Differential Empirical Mode 

Decomposition for fault diagnosis of rotating machinery was proposed and described, where the 

feature matrix of energy distribution is extracted from the EMD results of multi-order differential 

signals automatically. Simulation experiment was implemented with four classes of signals 

containing different frequency components, and the decomposition results and extracted features 

were described and discussed. Meanwhile, six classes of fault datasets for the rolling element 

bearings were utilized in the practical experiment, and the fault features are extracted by different 

order MDEMD and identified by four most common classifiers. The diagnosis results were 

compared with the original EMD in both training and testing identification rates. The experimental 

results showed that the proposed method is suitable for the feature extraction of rotating machinery, 

and it is an important support for realizing automatic fault diagnosis with satisfactory accuracy. 
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