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Abstract. The governing vibration differential equation of a plus planetary gear set has derived 

from the Lagrange method. Its three often neglected components are considered: [1] the meshing 

damping, [2] the elastic bearing support of the sun wheel, [3] and the angles between the 

movement direction of the planet carrier and the gear meshing line. A simulation model for a plus 

planetary gear set is built. The influence that the key components have on vibration characteristics 

is analyzed. Model validation is performed by comparing the theoretical, simulated and measured 

natural frequencies. In order to reduce vibration and noise, a comprehensive finite element model 

of a plus planetary gear set is built. It provides useful information on dynamic transmission errors 

of the plus planetary gear set. The tooth profile modification is optimized by using the genetic 

algorithm. The optimal tooth profile modification is validated by the results of the experiment. 

Keywords: vibration characteristics, dynamic transmission error, tooth profile modification. 

1. Introduction 

Planetary gear sets are widely used for automotive automatic transmissions because of their 

advantages, which include [1] a circular and compact construction, [2] very high and low gear 

ratios with a small number of teeth, [3] high density of torque and power (as a result of power 

splitting), and [4] low weight (in comparison with an ordinary gear). However, the noise levels of 

planetary gear systems is their one potential shortcoming. Major gear noise and vibration problems 

can be eliminated in the later stages of the transmission unit development. The elimination can be 

achieved if the designer can evaluate free vibration characteristics of a candidate planetary gear 

set. The evaluation has to be carried out in different power flow conditions in the early stages of 

its design. 

As for the vibration performance analysis, Liu [1] built a coupled dynamic model. The model 

involved pure-torsion and translation-torsion types. The nonlinear factors (such as gear backlash, 

time-varying meshing stiffness and meshing errors) were considered. Meshing errors were solved 

numerically by the harmonic balance method. Guo and Parker [2] built a model for a compound 

planetary gear set. They pointed out its shortcomings by comparing the calculated results with the 

measured results. As for the tooth profile modification for reducing vibration and noise, Ohno [3] 

and Wang [4] proposed a static three-dimension finite element model. The tooth profile 

modification was evaluated by the calculated contact stresses at gear meshing positions. However, 

the above research work ignored not only the influence of the meshing damping but also the elastic 

bearing support of the sun wheel (which leads to the planetary gear set model to be more rigid). 

Furthermore, the angles between the movements of the planet carrier and gear meshing were also 

ignored, which led to imprecise results. The proposed tooth profile modification to reduce 

vibration and noise is only relatively better. It is not the optimal one in the whole feasible region. 

Thus, it is necessary to build a reliable vibration characteristics model for planetary gear sets and 

get the optimal tooth profile modification. 

The main objective of this study is [1] to develop a dynamic model, which is capable of 

predicting the natural modes of a plus planetary gear set with double planet gears (abbreviated for 

DSNW for convenience and shown in Fig. 1), and [2] to propose an optimization method for tooth 

profile modification. The effectiveness of the model and the optimal tooth profile modification 

solution are verified by the results of the experiment. 
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Fig. 1. Schematic diagram of a plus planetary gear set 

2. Theoretical analysis 

2.1. Vibration differential equations of DSNW 

The following simplifications and assumptions are made for the planetary mechanism 

DSNW [5]: 

(1) Each gear is simplified and has an inertial sensor with a lumped mass. 

(2) Every gear meshing is simplified and has an elastic spring-damper connection. The 

meshing only exists on the theoretical meshing line. 

(3) The sun gear is allowed to float and is limited to planar movements (no swinging 

movements). 

The vibration model of the planetary mechanism DSNW is built (as seen in Fig. 2). Some 

symbols and subscripts are appointed in advance for convenience. The symbol 𝑘 represents the 

stiffness. The subscripts 𝑠, 𝑟, 𝑐 and 𝑧 represent the sun gear, the ring gear, the planet carrier and 

bearing, respectively. The subscripts 𝑝 and 𝑑 represent the planet gears. The subscripts 𝑝𝑗 and 𝑑𝑗 

represent the 𝑗th planet gear 𝑝 and 𝑑, respectively. The symbol 𝜃 represents the rotational angle, 

so �̇� is the rotational speed and �̈� is the angular acceleration. The symbol 𝑅  represents the radius 

of the gear. 

 
Fig. 2. Vibration model of the planetary mechanism DSNW 

The parameters of the planetary mechanism DSNW are listed in Table 1. 

The planetary mechanism DSNW has six normal working conditions. These conditions (based 

on the static component) can be uniformed into three different kinds (according to reference [6]). 

The optional static component can be the planet carrier, the ring gear and the sun gear 

(respectively), and the other components are randomly used as input and output. 

The mathematical vibration model of the planetary mechanism DSNW can be described by 
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the Lagrange equation [7]: 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�𝑗
) −

𝜕𝐿

𝜕𝑞𝑗
= 𝑄𝑗

′ , (1) 

where 𝐿 is the difference between the kinetic energy and the potential energy: 𝐿 = 𝑇 − 𝑉, in 

which 𝑇 is the kinetic energy and 𝑉 is the potential energy; 𝑞𝑗 is the 𝑗th generalized coordinate; 𝑄𝑗
′  

is the 𝑗th generalized force (but not the potential force, such as damping forces). 

Table 1.The parameters of the planetary mechanism DSNW 

Parameters 

Elements 

Sun 

𝑠 

Planet 

𝑝 

Planet 

𝑑 

Planet carrier 

𝑐 

Ring 

𝑟 

Module 4 4 4  4 

Tooth width (mm)  10 10   

Addendum coefficient  1 1   

Number of teeth 32 19 20  77 

Base circle (mm) 58.0 34.5 36.3  139.6 

Mass (kg) 2.0 1.8 1.8   

Inertia (kg·m2) 0.00388 0.00114 0.00132 0.104 0.724 

Meshing stiffness (MN/m) 𝑘𝑠𝑝 = 21, 𝑘𝑝𝑑 = 21, 𝑘𝑑𝑟 = 21 

Bearing stiffness (MN/m) 𝑘𝑧 = 3.2 

Meshing damping (N·s/m) 𝑐𝑠𝑝 = 1000,  𝑐𝑝𝑑 = 1000, 𝑐𝑑𝑟 = 1000 

Bearing damping (N·s/m) 𝑐𝑧 = 100 

Angle between the meshing line and  

the displacement of the planet carrier 
𝛼1 = 𝛼2 = 25° 

Coefficient of tip clearance 𝑐∗ 0.25 

Elastic modulus 𝐸 (MPa) 210000 

Poisson ratio 0.3 

Torque 𝑇 (N·mm) 43000 

The kinetic energy 𝑇 of the planetary mechanism DSNW yields: 

𝑇 =
1

2
𝐽𝑠�̇�𝑠

2 +
1

2
𝐽𝑟�̇�𝑟

2 +
1

2
𝐽𝑐�̇�𝑐

2 + ∑ [
1

2
𝐽𝑝𝑗(�̇�𝑝𝑗

′ )
2

+
1

2
𝑚𝑝𝑗(𝑅𝑝𝑐�̇�𝑐)

2
]

3

𝑗=1

+ ∑ [
1

2
𝐽𝑑𝑗(�̇�𝑑𝑗

′ )2 +
1

2
𝑚𝑑𝑗(𝑅𝑑𝑐�̇�𝑐)2]

3

𝑗=1

+
1

2
𝑚𝑠�̇�𝑠

2 +
1

2
𝑚𝑠�̇�𝑠

2, 

(2) 

�̇�𝑝𝑗
′ = �̇�𝑝𝑗 + �̇�𝑐 , (3) 

�̇�𝑑𝑗
′ = �̇�𝑑𝑗 + �̇�𝑐 , (4) 

where 𝐽 is the inertia matrix; 𝐽𝑥 is the rotational inertia of the component 𝑥 of the transmission; 

�̇�𝑝𝑗
′  and �̇�𝑑𝑗

′  are the absolute angular velocities of planet gears; �̇�𝑐  is the revolution angular 

velocity of planet gears (which is also the angular velocity of the planet carrier); �̇�𝑝𝑗 and �̇�𝑑𝑗  are 

the relative angular velocities of planet gears to the planet carrier; 𝑚𝑝𝑗  and 𝑚𝑑𝑗  are the mass of 

the 𝑗 th planet gears; 𝑚𝑠  is the mass of the sun gear; 𝑥𝑠  and 𝑦𝑠  are horizontal and vertical 

displacements of the sun gear (respectively). 

The potential energy of the planetary mechanism can be divided into two parts: [1] the potential 

energy in the meshing point of gear transmission  𝑉1, and [2] the potential energy of the sun wheel 

elastic bearing support  𝑉2, which is: 

http://dict.cnki.net/dict_result.aspx?searchword=%e5%bc%b9%e6%80%a7%e6%a8%a1%e9%87%8f&tjType=sentence&style=&t=elastic+modulus
http://dict.cnki.net/dict_result.aspx?searchword=%e6%b3%8a%e6%9d%be%e6%af%94&tjType=sentence&style=&t=poisson+ratio
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𝑉 = 𝑉1 + 𝑉2, (5) 

𝑉1 = ∑ [
1

2
𝑘𝑠𝑝(𝜃𝑠𝑅𝑠 − 𝜃𝑐𝑅𝑠 cos 𝛼2 + 𝜃𝑝𝑗𝑅𝑝𝑗 + 𝑥𝑠 cos 𝛼2 − 𝑦𝑠 sin 𝛼2)

2
]

3

𝑗=1

+ ∑ [
1

2
𝑘𝑝𝑑(𝜃𝑝𝑗𝑅𝑝𝑗 − 𝜃𝑑𝑗𝑅𝑑𝑗)

2

]

3

𝑗=1

+ ∑ [
1

2
𝑘𝑑𝑟(𝜃𝑐𝑅𝑟 cos 𝛼1 + 𝜃𝑑𝑗𝑅𝑑𝑗 − 𝜃𝑟𝑅𝑟)

2
]

3

𝑗=1

, 

(6) 

𝑉2 =
1

2
𝑘𝑧𝑥𝑠

2 +
1

2
𝑘𝑧𝑦𝑠

2, (7) 

where 𝑘𝑠𝑝  is the meshing stiffness between the sun and the planet gear; 𝑘𝑑𝑟  is the meshing 

stiffness between the planet and the ring gear; 𝑘𝑝𝑑 is the meshing stiffness between planet gears; 

𝛼1 is the angle between the displacement of the planet carrier and the meshing line between the 

ring and the planet gear; 𝛼2 is the displacement of the planet carrier and the meshing line between 

the sun and the planet gear. The expression for the damping corresponds with the above stiffness 

one by one. 

The rotational angle 𝜃  and the floating displacement of the sun gear 𝑥 , 𝑦  are treated as 

generalized coordinates. Eqs. (1)-(7) are combined, and the damped torsional and the translational 

vibration differential equation of the planetary mechanism DSNW yields: 

𝑀�̈� + 𝐶�̇� + 𝐾𝑋 = 0, (8) 

where 𝑋 , 𝑀 , 𝐾 , 𝐶  are (respectively) generalized coordinates, the inertia matrix, the stiffness 

matrix and the damping matrix of the planetary system. 

Based on the mathematical software MATLAB [8], the natural frequencies for all six working 

conditions are calculated. The calculation is done by solving the differential equation with the 

mode superposition method. A part of the calculated results are listed in Table 2. By comparing 

the theoretical results with the experimental ones [9], the calculation errors are 0.4 %-12.1 %. 

Therefore it is confirmed that the theoretical modeling method (described above) is an effective 

way to analyze the free vibration characteristics for plus planetary gear sets. 

Table 2. Natural frequencies for all working cases 

Working type Order 
Theoretical Simulated 

Experimental value 
Value Error (%) Value Error (%) 

I 

(the planet carrier is static) 

1 1295 6.4 % 1204 1.1 % 1217 

2 4519 2.2 % 4850 4.9 % 4622 

3 6456 2.9 % 6395 1.9 % 6272 

4 6559 0.8 % 6637 2.0 % 6510 

5 8293 2.6 % 8288 2.7 % 8515 

6 9316 0.4 % 9413 1.5 % 9278 

II 

(the ring gear is static) 

1 1295 12.1 % 1204 4.2 % 1155 

2 4211 4.3 % 4187 3.7 % 4039 

3 6456 2.6 % 6395 1.6 % 6293 

4 6559 1.9 % 6600 1.3 % 6685 

5 6718 1.1 % 6637 2.3 % 6790 

6 8471 0.7 % 8516 0.1 % 8527 

III 

(the sun gear is static) 

1 1295 9.9 % 1204 2.2 % 1178 

2 2298 9.8 % 2155 3.0 % 2092 

3 6456 0.5 % 6395 0.4 % 6421 

4 6559 2.3 % 6544 2.5 % 6714 

5 6682 1.1 % 6636 1.7 % 6754 

6 9123 1.0 % 9280 0.7 % 9216 
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2.2. Theoretical model of dynamic transmission errors of meshing gears 

In order to calculate the transmission error of a pair of meshing planet gears, most research 

work uses the Ishikawa method [10, 11]. This method treats the gear tooth profile as a combination 

of a rectangle and a trapezoid (shown in Fig. 3). Bending, shearing and contact deformation are 

considered. 

In the Ishikawa method, the transmission error of a pair of meshing gears is defined as: 

𝑇𝐸 = 𝐸 − 𝛿, (9) 

where 𝐸 is the tooth composite deviation, which is 𝐸 = 𝐸𝑓1 + 𝐸𝑓2 + 𝐸𝑆 (where 𝐸𝑓1 and  𝐸𝑓2 are 

the tooth shape deviations (the tip easing quantity included) of the driver and the driven gears at 

the meshing point; 𝐸𝑆 is the integrated tooth pitch deviation between the current meshing tooth 

pair and the former one); 𝛿 is the tooth composite deformation (its calculation is explained in the 

Ishikawa method [10, 11] and is not discussed here). According to the data shown in Table 1, the 

parameters are: 𝐸𝑓1 = 8 μm, 𝐸𝑓2 = 8 μm, 𝐸𝑆 = 10 μm. 

Based on the Ishikawa method, the calculated transmission errors for the planetary mechanism 

DSNW (Fig. 1) are shown in Fig. 4. However, since the tooth profile is assumed to be a trapezoid 

in the theoretical model, the stiffness in the middle zone of meshing teeth is smaller than the real 

one. This could lead to an overestimation of the deformation. 

  
Fig. 3. Schematic diagram of the tooth  

simplification [10] 
Fig. 4. The calculated transmission errors 

3. Simulation analysis 

3.1. Simulation model of vibration characteristics of DSNW 

As a complex physical system, the planetary mechanism DSNW can be divided into various 

minimum basic elements. These elements include the tooth meshing between all gears, the 

rotational inertia for all independent shafts, bearing, etc. Each minimum basic element is easily 

modeled according to their own corresponsive theories. The reference [6] proposes a modeling 

method for any planetary mechanism, which is the simulation software SimulationX. SimulationX 

is verified to be effective by the data of various experiments. By combining each basic element, a 

family of simulation models for the planetary mechanism DSNW (for all working cases) can be 

successfully built. Fig. 5 shows a simulation model for the 1st working case. In this case, the planet 

carrier is fixed. A part of the simulated natural frequencies for all working cases are listed in 

Table 2. By comparing the simulated results with the experimental ones, the simulation errors 

yield and are 0.4 %-4.9 %. It is obvious that the built simulation method is more capable of 

analyzing the free vibration characteristics for plus planetary gear sets than the theoretical analysis 

is. 

Compared with the theoretical analysis, the simulation tool has special advantages of saving 

more time and energy. It also allows engineers to pay more attention to the physical system itself 

http://dict.cnki.net/dict_result.aspx?searchword=%e7%bb%bc%e5%90%88%e5%81%8f%e5%b7%ae&tjType=sentence&style=&t=composite+deviation
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and not the miscellaneous mathematical problems. Based on the simulation model, the influence 

of each component of the planetary mechanism DSNW on the power loss and the vibration 

amplitude (under each natural frequency) is simulated. Fig. 6 and Fig. 7 (respectively) show the 

relative power loss and the amplitude of DSNW for the 1st working case. For each natural 

frequency caused by planet gears, there are two vibration modes with similar amplitudes. Only 

one mode for these frequencies is listed in Fig. 7 [12]. For convenience, the numbering of the 

elements and components of the planetary mechanism DSNW is appointed in Table 3 and Table 4, 

respectively. 

s-p1 d1-r

p-d

Jp1

Jd3

Jp2

Jp3

Jd2

Jd1

Js

Jc
Jr

Load

Stationary

T

s-p2

s-p3

d2-r

d3-r

 
Fig. 5. Simulation model of DSNW 

  
Fig. 6. Relative power loss of working case I Fig. 7. Vibration mode of working case I 

 
Table 3. Elements influencing the free vibration 

characteristics of DSNW 

No. Elements 

1 Tooth meshing of gear 𝑠 – 𝑝1 

2 Tooth meshing of gear 𝑠 − 𝑝2 

3 Tooth meshing of gear 𝑠 − 𝑝3 

4 Tooth meshing of gear 𝑝1 − 𝑑1 

5 Tooth meshing of gear 𝑝2 − 𝑑2 

6 Tooth meshing of gear 𝑝3 − 𝑑3 

7 Tooth meshing of gear 𝑑1 − 𝑟 

8 Tooth meshing of gear 𝑑2 − 𝑟 

9 Tooth meshing of gear 𝑑3 − 𝑟 
 

Table 4. Components influencing the free vibration 

characteristics of DSNW 

No. Components 

1 Revolution of planet gear 𝑝1, 𝑑1 

2 Revolution of planet gear 𝑝2, 𝑑2 

3 Revolution of planet gear 𝑝3, 𝑑3 

4 Rotation of planet gear 𝑝1 

5 Rotation of planet gear 𝑝2 

6 Rotation of planet gear 𝑝3 

7 Rotation of planet gear 𝑑1 

8 Rotation of planet gear 𝑑2 

9 Rotation of planet gear 𝑑3 

10 Sun gear 𝑠 

11 Ring gear 𝑟 

12 Planet carrier 𝑐 
 

Since the power flow routes are different for each working case, there are some differences 

between the influences of the key elements and the components on the power loss and the 

amplitude. Based on Fig. 6 and Fig. 7, it is easy to distinguish the elements, which have the 

strongest influence under all working cases (listed in Table 5). The number of natural frequencies 

influenced by any key element is the same for all working cases. The key element, which 
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influences the natural frequency of the 1st order, is the tooth meshing of the sun gear with the 

planet gear 𝑝. Meanwhile, the key element, which influences the natural frequency of the 3rd order, 

is the tooth meshing of the planet gear 𝑑 with the ring gear. Based on the simulated results of the 

planetary mechanism DSNW (for all working cases), all vibration modes can be divided into two 

types. In one type, the vibration modes are asymmetric and characterized by motions of planets. 

Meanwhile, all loaded central components are static. In another type, the vibration modes are axi-

symmetric, where all double-planet sets move exactly the same way. Meanwhile, the input and 

output components have their own motions. The vibration mode characteristics are the same as 

the conclusion from the reference [12]. There, these two types are (respectively) named as the 

planet mode and the overall mode. 

Table 5. Key elements and components for all working cases 

Working 

type 
Order 

No. of key 

elements 
Key elements Key components 

I 

1 1, 2, 3 sun gear-planet gear 𝑝 planet gear 𝑝 

2 4, 5, 6 planet gear 𝑝-planet gear 𝑑 planet gear 𝑑, sun gear 

3 7, 8, 9 planet gear 𝑑-gear ring planet gear 𝑝 

4 4, 5, 6 planet gear 𝑝-planet gear 𝑑 planet gear 𝑑 

5 1, 2, 3 sun gear-planet gear 𝑝 sun gear, gear ring 

6 7, 8, 9 planet gear-gear ring planet gear 𝑑, sun gear 

II 

1 1, 2, 3 sun gear-planet gear 𝑝 planet gear 𝑝, planet gear 𝑑 

2 4, 5, 6 planet gear 𝑝-planet gear 𝑑 sun gear, planet gear 𝑝, planet carrier 

3 7, 8, 9 planet gear 𝑑-gear ring planet gear 𝑝, planet carrier 

4 7, 8, 9 planet gear 𝑑-gear ring planet gear 𝑑, sun gear 

5 4, 5, 6 planet gear 𝑝-planet gear 𝑑 planet gear 𝑑 

6 1, 2, 3 sun gear-planet gear 𝑝 planet gear 𝑝, sun gear 

III 

1 1, 2, 3 sun gear-planet gear 𝑝 
planet gear 𝑝, planet gear 𝑑,  
planet carrier 

2 1, 2, 3 sun gear-planet gear 𝑝 planet gear 𝑝,planet gear 𝑑, gear ring 

3 7, 8, 9 planet gear 𝑑-gear ring 
planet gear 𝑝, planet gear 𝑑, 

planet carrier 

4 4, 5, 6 planet gear 𝑝-planet gear 𝑑 
planet gear 𝑝, planet gear 𝑑, 

planet carrier 

5 4, 5, 6 planet gear 𝑝-planet gear 𝑑 planet gear 𝑝, planet gear 𝑑 

6 7, 8, 9 planet gear 𝑑-gear ring planet gear 𝑑, planet carrier, gear ring 

3.2. Finite element model of dynamic transmission error of meshing gears 

A parametric physical model of the meshing planet gears is developed in order to calculate the 

dynamic transmission error of meshing gears more accurately. The development happens in the 

finite element package Ansys-APDL. In order to save computational time, only a part of teeth for 

the symmetric gears is modeled. The meshing model is shown in Fig. 8. The solid element 

SOLID164 is selected. Its elastic modulus, the passion ratio and the dynamic friction coefficient 

are (respectively) set to be 2.1×105 MPa, 0.3 and 0.05. 

Fig. 9 shows simulated transmission errors of one pair of the meshing planet gears 𝑝 and 𝑑 of 

the planetary mechanism DSNW. The comparison of the simulated result (in Fig. 9) with the 

theoretical result (in Fig. 4) demonstrates that the simulated result is more accurate. On the other 

hand, it is smaller than the theoretical result (since the simulation model considers the real 

geometrical profile of meshing teeth). The difference is about 7.8 %. Therefore the simulation 

model successfully predicts the dynamic transmission errors and can be a powerful simulation 

tool. In addition to this, it is evident that transmission errors are relatively small in the double-teeth 

meshing zone. Meanwhile, they are big in the single-tooth meshing zone. Therefore large 

fluctuation exists in their alternating zone. This means that an impact is possible when gears are 



1208. STUDY ON VIBRATION CHARACTERISTICS AND TOOTH PROFILE MODIFICATION OF A PLUS PLANETARY GEAR SET.  

HUIJUN YUE, YANFANG LIU, XIANGYANG XU, JUNBIN LAI 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MARCH 2014. VOLUME 16, ISSUE 2. ISSN 1392-8716 961 

meshing in or out (due to geometrical interferences). This leads to vibration and noise while 

meshing. Here, the maximum fluctuation of the transmission error is about 9 μm. Based on the 

finite element model, the interference value while meshing in is calculated to be 0.01 mm, which 

should be eliminated in order to avoid the impact while meshing in. 

  
Fig. 8. Finite element meshing model of one pair of 

the meshing planet gears 𝑝 and 𝑑 

Fig. 9. The simulated transmission errors 

4. Tooth profile modification method 

The modification of the tooth profile of meshing gears is a common method used to reduce 

vibration and noise. The parameters of this method are the modification width ∆ and the depth ℎ 

of the tooth profile. According to the finite element analysis, the interference during meshing is 

0.01 mm. Therefore the modification width should not be less than the interference. Additionally, 

the modification depth should not be less than 0.0001 mm in order get enough high precision. 

According to the recommended formulae in the reference [13, 14], the maximum modification 

depth  ℎ𝑚𝑎𝑥 and the maximum modification width ∆𝑚𝑎𝑥 are calculated: 

∆𝑚𝑎𝑥= 0.02𝑚𝑛 ,  ℎ𝑚𝑎𝑥 = 0.65𝑚𝑛,  

where 𝑚𝑛 is the normal modulus of the gear. Therefore the optional modification parameters are 

limited to be 0.02 mm ≤ ∆ ≤ 0.08 mm, 0.0001 mm ≤ ℎ ≤ 2.6 mm. 

 

a) Before the modification 
 

b) After the modification 
Fig. 10. Stress distribution on meshing teeth 

With the genetic algorithm, the optimal modification parameters of the tooth profile are found 

in the modification curves. The line-modification method and the parabolic-modification method 

are used respectively. Since there is no vibration when the transmission error is a constant value, 

the reciprocal of the fluctuation of the transmission error is selected as an adaptive variable. This 

is done in order to evaluate the population in the genetic algorithm [13-15]. The optimal tooth 

profile modification yields from the line-modification method. Here, the optimal modification 

width is 0.032534 mm and the optimal modification depth is 2.4983 mm. The stress of gears when 
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meshing in (meshing out works similarly) before and after the tooth profile modification is 

compared in Fig. 10(a) and (b). It is obvious that the maximum stress position exists at the tooth 

tip before modification. This would cause plastic deformation or the fracture of oil films at the 

meshing position, i.e. a scuffing failure. However, after the modification, the maximum stress 

moves close to the middle of the meshing tooth. Meanwhile, there is no interference when meshing 

in and out, which weakens the impact and therefore achieves a steady transmission [16]. 

Fig. 9 shows the simulated transmission errors of the meshing planet gears before and after 

tooth profile modification. It is obvious that the maximum fluctuation amplitude of the 

transmission error is reduced from 9 μm to 6.5 μm with the optimal tooth profile modification, 

which is nearly 27.78 %. 

5. Experiment study 

Fig. 11 shows the analysis of the principle for testing the above vibration characteristics. 

Fig. 12 illustrates the real test-bed and its monitoring devices for gathering and processing 

vibration and noise signals of the planetary mechanism DSNW. This test-bed consists of a 

vibration test subsystem, a noise test subsystem and a signal processing subsystem. This test-bed 

measures the natural frequencies of the planetary mechanism DSNW by using the hammer 

impacting method. Moreover, it is stated in the references [17-19] that the noise experiment is an 

effective tool to examine the improvement of the tooth profile modification when reducing 

vibration and noise. 

 
Fig. 11. Schematic diagram of the test rig 

  
Fig. 12. Main testing apparatuses of the test rig 

The measured natural frequencies are listed in Table 2. The theoretical model and the 

simulation model are verified to be capable of predicting free vibration characteristics. The 

simulation model has higher precision because more real factors are considered. 

Noise experiments under various speeds for the planetary mechanism with (and without) tooth 

profile modifications are completed. In order to verify the proposed optimal modification by the 

genetic algorithm, the modification is also tested according to the traditional Ishikawa formulae. 

Fig. 13 shows the experimental noise results. They demonstrate that the gear vibration noise is 

reduced significantly with the proposed tooth profile modification (especially when the speed is 

from 1000 r/min to 3000 r/min). 
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Fig. 13. Measured noise results 

6. Conclusions 

(1) The governing vibration differential equation of a plus planetary gear set derives from the 

Lagrange method. In order to improve calculation precision, three often neglected components are 

considered: the meshing damping, the elastic bearing support of the sun wheel, and the angles 

between the movement direction of the planet carrier and tooth meshing. The comparison of the 

theoretical results and the data of the experiment demonstrates that the calculation errors are about 

0.4 %-12.1 %. 

(2) The vibration characteristics of a plus planetary gear set for various working cases are 

simulated. The theoretical and the simulated results are verified by the data of the experiment. The 

comparison of the simulated results and the data of the experiment demonstrates that the 

simulation errors are about 0.4 %-4.9 %. This validates that the built simulation method is more 

capable of analyzing the free vibration characteristics for plus planetary gear sets than the 

theoretical analysis is. The most important elements and components, which influence the 

vibration characteristics, are analyzed by using the simulation model. 

(3) Combining the finite element method and the genetic algorithm, the optimal tooth profile 

modification is obtained. Noise experiment results verify that the effectiveness of the proposed 

tooth profile modification (in order to reduce vibration and noise) is much stronger than the 

traditional Ishikawa formulae. 
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