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Abstract. The characteristics of the cutting load time series were investigated using chaos and 

fractal theories to study the information and dynamic characteristics of rock cutting. The following 

observations were made after analyzing the power spectrum, denoising phase reconstruction, 

correlation dimension and maximum Lyapunov exponent of the time series. A continuous 

broadband without a significant dominant frequency was found in the power spectrum. The 

restructured phase space presented a distinct strange attractor after wavelet denoising. The 

correlation dimension was saturated at an embedding dimension of 7. Lastly, and the maximum 

Lyapunov exponent exceeded 0 via the small data method. These findings reflected the chaotic 

dynamic characteristics of the cutting load time series. The box dimensions of the cutting load 

were further investigated under different conditions, and the difference in cutting depth, cutting 

velocity and assisted waterjet types were found to be ineffective in changing the fractal 

characteristic. As cutting depth become small, rock fragment size also decreased, whereas fractal 

dimension increased. Moreover, a certain range of cutting velocity increased fragment size but 

decreased fractal dimension. Therefore, fractal dimension could be regarded as an evaluation 

index to assess the extent of rock fragmentation. The rock-cutting mechanism remained 

unchanged under different assisted waterjet types. The waterjet front cutter impacts and damages 

rock, however, the waterjet behind of cutter is mainly used to clean fragments and to lubricate the 

cutter. 
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1. Introduction 

The cutting load time series directly records the dynamic characteristic and other information 

on rock fragmentation, the irregularity and aperiodicity of which are closely related to rock 

fragmentation itself [1]. The cutting load time series also reflects the dynamics of the cutting 

system and the information on rock breakage [2]. Collision complicates the nonlinearity and 

singularity of the cutting system. Therefore, the nonlinear characteristics of the cutting load must 

be investigated to understand the dynamics of the cutting system. Chaos and fractals have been 

used to investigate rock fragmentation through an interrelated time series, such as cutting load and 

acoustic emission. Duan et al. [3] used chaos theory to investigate the nonlinear characteristics of 

the cutting load time series by a self-controlled hydro-pick and confirmed that the cutting load 

typically has chaotic characteristic. The correlative dimension can be used as a sensitivity 

parameter to estimate the rock fracture mechanism. Liu et al. [4] used the fractal theory to study 

the fractal characteristics of the load time series of a conical pick. They also developed fractal 

dimension, fractal length, and other feature parameters to explain the physical phenomena. Nie 

et al. [5] used the saturated correlation dimension method to calculate the correlation dimension 

of electromagnetic radiation and acoustic emission signals. They confirmed that these signals have 

chaotic characteristics. Wu et al. [6] adopted fractal theory to investigate the fractal features of the 

acoustic emission time series in rock failure under uniaxial compression and found that all time 

series at different stages have fractal features. Fractal dimension can be used to describe the 

evolving regularity of microscopic cracks. Wang et al. [7] analyzed the fractal feature of the 

electromagnetic radiation signal in coal and rock failure process. They found that the variation in 

correlation dimension is consistent with coal and rock burst processes. 
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To a certain text, the aforementioned studies have shed light on rock fragmentation and cutting 

system dynamics. Although most of these studies have focused on the characteristics of acoustic 

emission signals in rock fragmentation, only a few works have explored the nonlinear 

characteristics of the cutting load. In the presented study, fast Fourier transform, denoising, phase 

space reconstruction, correlation integral and small data methods were adopted to obtain the power 

spectrum, phase space diagram, correlation dimension and maximum Lyapunov exponent for 

verifying the chaotic dynamic characteristics of the cutting load time series. Fractal dimensions 

under different cutting conditions were also calculated and analyzed to investigate the rock 

fracture mechanism and cutting performance. 

2. Methods 

2.1. Phase space reconstruction 

The irregular contact between the cutting mechanism and rock usually contributes to the 

complexity, nonlinearity, ambiguity, and dissipativeness of a cutting system and to the 

nondeterminacy of a cutting load time series. However, the complex dynamic characteristics of a 

cutting system are difficult to verify in a low-dimensional coordinate systems. To investigate such 

dynamic systems, the time series must undergo phase reconstruction. However, the cutting load 

signal can only be collected usually during rock cutting, and thus, obtaining reconstructed phase 

space along with all the derivatives of the cutting load signal can yield plenty of errors. A time 

series is determined by the self-relevant components defined in the Takens theorem [8], and the 

information on its components is hidden within the time series itself. Therefore, one or several 

equivalent phase spaces of the time series can be built using the time delay method to recover the 

information on the cutting system. Several methods have been developed recently for phase-space 

reconstruction, such as uniform and non-uniform embedding procedures [9-10]. The 

delay-coordinate method for phase-space reconstruction of 1D time series (𝑥(𝑖), 𝑖 = 1,2, … , 𝑛) 

has been widely used in different fields by Packard [11], and the 𝑚 – dimensional reconstructed 

vectors: 

𝑋(𝑡) = (𝑥(𝑡), 𝑥(𝑡 + 𝜏), … , 𝑥(𝑡 + (𝑚 − 1)𝜏))
𝑇

,    𝑡 = 1,2, … , 𝑁, (1) 

where 𝑚 represents the embedded dimension of restructured phase space; 𝜏 stands for the delay 

time; 𝑁 is the points number in the phase space, 𝑁 = 𝑛 − (𝑚 − 1)𝜏.  

2.2. Denoising based on wavelet analysis 

As a result of the influence of measurement devices and the accuracy of signal acquisition, the 

desired signal of the cutting load is often disturbed by noise. Consequently, the internal dynamics 

of the cutting system may be masked by the unpredictability and destructive effect of noise. 

Therefore, noise must be reduced to reveal the internal characteristics of the cutting load. 

Numerous methods have been developed recently for signal denoising, such as filtering, shadow 

theorem, singular spectrum analysis, and wavelet analysis [12-13]. Among these methods, wavelet 

analysis is considered as the most suitable for signal denoising [14]. Denoising analysis is 

generally conducted in either the time or frequency domain, and thus, wavelet analysis can be 

conducted in both domains, which helps in processing random and non-stationary time series to 

achieve a high signal-to-noise ratio. For a discrete signal 𝑥(𝑖) with a family of shifted and scaled 

wavelets associated with 𝜑(𝑡), the discrete wavelet transform is given as [15]: 
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𝐷𝑊𝑇𝜑𝑓(𝑔, 𝑘) =
1

√𝑎𝑜
𝑔

∑ 𝑥(𝑖)

𝑖

𝜑 (
𝑘 − 𝑖𝑏𝑜𝑎𝑜

𝑔

𝑎𝑜
𝑔 ). 

(2) 

The mother wavelet in Equation (2) is discretely dilated by the scale parameter 𝑎𝑜
𝑔

 and is 

translated by the translation parameter 𝑖𝑏𝑜𝑎𝑜
𝑔

, where 𝑎𝑜 and 𝑏𝑜 are fixed values, with 𝑎𝑜 > 1 and 

𝑏𝑜 > 0, whereas 𝑔 and 𝑖 are positive integer values [16]. 

2.3. Delay time and embedded dimension 

Delay time is an important parameter for phase-space reconstruction. The trajectories in 

reconstructed phase space gather at the same place if the delay time was too short because of the 

influence of the acquisition instrument and interference noise on the cutting load time series. 

Moreover, the shortest time interval for capturing the cutting load information cannot be covered. 

If the delay time is too long, the information cannot be captured because of the violent fluctuations 

in the cutting system. Several methods, such as the autocorrelation and mutual information 

methods can be used to estimate the delay time. The autocorrelation method is preferred for its 

simplicity and maturity in estimating delay time. For a 1D discrete time series, the autocorrelation 

function of delay time 𝑗𝜏 can be expressed as [17]: 

𝑅𝑥𝑥(𝑗𝜏) =
1

𝑁
∑ 𝑥(𝑡)

𝑁−1

𝑡=1

𝑥(𝑡 + 𝑗𝜏),    𝜏 = 1,2, …. (3) 

Given 𝑗, ratio of the autocorrelation function with delay time 𝑗𝜏 to that of the initial value is 

solved. 𝜏 can be universally considered as delay time when 𝑅𝑥𝑥(𝑗𝜏)/𝑅𝑥𝑥(𝑗) decreases to 1 − 1/𝑒 

or if it reaches the first minimal value [18]. 

Embedded dimension is another important parameter for phase-space reconstruction. The 

trajectories in the reconstructed phase space fold if the embedded dimension is too small. If the 

embedded dimension is too large, then the restructured phase space increases the calculated 

amount, and noise may be dominant. Several methods can be used to estimate embedded 

dimension such as the correlation integral, nearest neighbour and odd value decomposition 

methods. This study uses the correlation integral method because of the high density of points in 

the phase space. Given 𝑟 > 0 as threshold, the number of points according to ‖𝑥𝑖 − 𝑥𝑗‖ < 𝑟 is 

calculated. The ratio of the calculated points to that of the total points is the correlation integral, 

which can be expressed as [19]: 

𝐶𝑁(𝑟) =
2

𝑁(𝑁 − 1)
∑ ∑ 𝐻(𝑟 − ‖𝑥𝑖 − 𝑥𝑗‖),

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

 (4) 

where 𝐻(∗) represents the Heavside function 𝐻(> 0) = 1, 𝐻(≤ 0) = 0. 

The threshold 𝑟 is set to an appropriate value, and the correlation dimension 𝐷 of the time 

series can be calculated approximately as: 

𝐷 =
lg𝐶𝑁(𝑟)

lg𝑟
. (5) 

2.4. The Lyapunov exponent 

The power spectrum aims to reveal the frequency characteristics of the time series in the time 
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domain or frequency domain as well as to distinguish periodic, quasi-periodic, and random signals. 

Despite its intuitionism and easiness, the power spectrum cannot readily distinguish the large 

periodic dynamic system or chaos system. The Lyapunov exponent is used to describe the 

diffusion or convergence rate of the phase-space trajectory of chaotic time series with an 

exponential law. The chaos system is confirmed by a positive Lyapunov exponent. This exponent 

is also widely used to identify the chaotic characteristic of time series. The Wolf, Jacobian, small 

data methods can be used to calculate the maximum Lyapunov exponent at present. The small 

data method has several advantages, including its high-speed calculation and low sensibility to 

embedded dimension, delay time and data amount. For phase-space reconstruction, the nearest 

neighbor of each point can be found in phase space by using the following equation [20, 21]: 

𝑑𝑡(0) = min
𝑥(𝑡̂)

‖𝑋(𝑡) − 𝑋(𝑡̂)‖,    |𝑡 − 𝑡̂| > 𝑝, (6) 

where 𝑡 is equal to 1,2, … , 𝑁 and 𝑡 ≠ 𝑡̂; 𝑝 is the average period of the cutting load time series, that 

can be set to the reciprocal of the energy spectrum frequency; 𝑋(𝑡) is the state point of the 

reconstructed phase space; 𝑑𝑡(0) is the distance between one point and the nearest point during 

the initial time. 

Suppose that an exponent diverging rate 𝜆 is present between reference the point 𝑋(𝑡) and its 

nearest point 𝑋(𝑡̂) in the basic orbit, then it can be calculated as follows: 

𝑑𝑡(𝑖) = 𝑑𝑡(0)𝑒𝜆(𝑖Δ𝑡) → ln𝑑𝑡(𝑖) = ln𝑑𝑡(0) + 𝜆(𝑖Δ𝑡) → 𝑦(𝑖) =
〈ln𝑑𝑡(𝑖)〉

Δ𝑡
, (7) 

where Δ𝑡 is the sample period; 𝑑𝑡(𝑖) is the distance of the nearest points of 𝑡 group in the basic 

orbit with the elapsed time 𝑖Δ𝑡; 〈ln𝑑𝑡(𝑖)〉 is the average value of all about 𝑡. 

2.5. Fractal dimension 

The strange attractor generally has a self-similar structure in the phase space, and the chaotic 

time series also has a statistical similarity to the fractal time scales [22]. Fractal dimension is an 

important parameter in describing the complexity of a system. The load time series can be regarded 

as an open curve in two dimensions, and its outline has a fractal feature. The fractal dimension 

can be used to reflect the geometric feature to analyze the complexity and irregularity levels. 

Topological, capacity, similarity, and box dimensions are considered as fractal dimensions. The 

box dimension method is a simple and mature method technique for estimating the fractal 

dimension. The number 𝑁(𝑙) of boxes with side length 𝑙 covers the curve of the time series 𝐹, 

which follows the fractal distribution with a different side length, as follows [23]: 

𝑁(𝑙)𝑙𝐷𝑏 = 𝐴(𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡) → log2(𝑁(𝑙)) = −𝐷𝑏log2(𝑙) + log2(𝐴). (8) 

According to Equation (8), fractal dimension is equal to the slope of log2(𝑁(𝑙)) to log2(𝑙). 

3. Experiment 

3.1. Cutting load signal acquisition 

The signal acquisition system of rock cutting is shown in Fig. 1. The system mainly included 

a cutting device, a fixed beam for attaching strain gages, a signal acquisition instrument, a 

computer to process signals, and other assistive devices. In the cutting device, the cutter would act 

on the rock, and its cutting speed and depth could be adjusted. The strain gage was attached to the 

fixed beam and not directly to the cutter to adjust cutting parameters conveniently. The INV306U 

instrument, which was developed by Beijing Dongfang Vibration And Noise Technology 
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Research Institute, was used to collect the signals to achieve voltage signal acquisition and 

amplification by using different types of strain gage bridges. The sample frequency was set to 

1024 Hz to obtain more comprehensive information. The signal was processed through a personal 

computer with intelligent data acquisition and software DASP-V10 software. A full-bridge circuit 

of strain gages was used to collect voltage signal [24]. The changes in voltage signal were 

eliminated through beam bending when the beam torque was used to calculate the cutting load. 

 
Fig. 1. The signal acquisition system: (a) a cutting device; (b) a fixed beam and strain gage bridge;  

(c) a signal acquisition instrument; (d) a computer to process signals 

3.2. Experimental phenomena 

In rock cutting process, the time series of a typical load signal was collected as shown in Fig. 2. 

The extrusion of the cutter on the rock at the initial stage produced a crushing zone, and the cutting 

load increased nonlinearly along with penetration displacement. The cutting load continued to 

increase after the crushing zone was formed, and several small peaks exhibited that a number of 

local breakings would occur before the peak cutting load could be achieved. The rock cutting load 

instantaneously decreased to a small value after the peak cutting force was achieved, thus 

indicating that a large rock fragment was formed because of the extrusion of the cutter on the rock. 

The aforementioned phenomena are consistent with the rock cutting theory or the experimental 

results [1, 25-26]. The formation of crushing zone, local breakings, and the avalanche of large 

fragments alternately occurred, which contributed to the appearance of several smaller pecks 

between two adjacent large peaks. The aperiodicity of the cutting load amplitude and wavelength 

confirmed the discreteness and irregularity of rock cutting and breaking. 

 
Fig. 2. Cutting load time series 
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4. Results 

4.1. Chaos characteristics 

Power spectrum analysis can be used to understand the characteristics of a time series, such as 

periodic, quasi-periodic and non-periodic signals. The cutting load time series was translated by 

fast Fourier transform in the frequency domain [27], and its power spectrum is shown in Fig. 3. 

The power spectrum of the periodic signal exhibited discreteness; however, that of the cutting load 

exhibited a continuous broadband, non-dominant frequency, and a wide-band noise. Therefore, 

the cutting load time series exhibited chaotic characteristics. Given that such features were 

obtained outwardly, phase-space reconstruction and the maximum Lyapunov exponent were still 

necessary to identify the characteristics of cutting system. 

The phase space of the time series was restructured using Equation (1), as shown in Fig. 4. The 

trajectories were disorganized and unsystematic in the phase space, and exhibited 

pseudo-randomness. Therefore, the interference noise should be reduced to prevent the time series 

from being influenced by the unpredictability and destructiveness of noise. 

  
Fig. 3. Power spectrum of cutting load Fig. 4. Reconstructed phase space 

In the present study, the principle of denoising was adopted based on a multi-resolution signal 

decomposition analysis. The rock cutting signal was processed through multi-resolution signal 

decomposition, and was decomposed up to level 8 by using “discrete Meyer” as a mother wavelet. 

After inspecting the components, the signal was denoised by using detail component 7 and 8. The 

cutting load signal of denoising is shown in Fig. 5 whereas the reconstructed phase space is shown 

in Fig. 6. The trajectories of the reconstructed phase space were free from repetition, and 

enfoldment, and were concentrated at a certain region. Moreover, the reconstructed phase space 

of denoising exhibited an unambiguous strange attractor, which confirmed the chaotic dynamic 

characteristic of the cutting load. The denoising of the time series by wavelet analysis was shown 

to improve the deterministic components of the cutting system. 

 
Fig. 5. Cutting load signal of denoising 
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The ratio of the autocorrelation function with delay time 𝑗𝜏 to that of the initial value could be 

obtained using Equation (3), as shown in Fig. 7. The delay time was equal to 10 when 

𝑅𝑥𝑥(𝑗𝜏)/𝑅𝑥𝑥(𝑗) reached the first minimal value, and to 100 when 𝑅𝑥𝑥(𝑗𝜏)/𝑅𝑥𝑥(𝑗) decreased to 

1 − 1/𝑒. In the presented study, 100 was selected as the delay time to avoid the loss of dynamic 

information of the cutting system. 

  
Fig. 6. Phase space of denoising signal Fig. 7. 𝑅𝑥𝑥(𝑗𝜏)/𝑅𝑥𝑥(𝑗) 

The correlation dimension saturated to a certain value with increasing embedded dimension if 

there was a strange attractor in the restricted phase space. The saturation value is often regarded 

as the correlation dimension of the time series. The variation of the correlation dimension with 

increasing embedded dimension is shown in Fig. 8. According to Takens theorem, the embedded 

dimension of the cutting system should be equal to 8. 

The Lyapunov exponent of the time series can be estimated according to the slopes of the 

straight lines based on Equation (7). The maximum Lyapunov exponent was equal to the slope of 

a linear area of 𝑦(𝑖)~𝑖  according to least-square method. According to 𝑦(𝑖)~𝑖  and  

𝑦(𝑖) − 𝑦(𝑖 − 1)~𝑖 (Fig. 9), 𝑦(𝑖) − 𝑦(𝑖 − 1)~𝑖 were equal basically equal when 𝑖 was within the 

range of 6 to 12. The slope of 0.065 within this range was regarded as the maximum Lyapunov 

exponent of the cutting load time series by the linear least-square regression method, which also 

demonstrated the chaotic dynamic characteristic of the cutting system. 

  
Fig. 8. Correlation dimension Fig. 9. Lyapunov exponent 

4.2. Factors that influence fractal dimension 

4.2.1. Cutting depth 

According to Equation (8), the double logarithmic curves with the cutting depths of 15 mm 
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and 20 mm are shown in Fig. 10. The slopes of these curves were 1.57 and 1.46 respectively, via 

the linear least-square regression method. The correlation coefficients of the fitting straight lines 

were all higher than 0.99, which reflected the fractal feature of the cutting load time series. 

Therefore, cutting depth had no influence on the fractal distribution of the load signal. A difference 

was observed in the fractal dimension when the cutting depth was different. The fractal dimension 

decreased with increasing cutting depth, thus indicating an increase in the self-similarity of cutting 

load when the cutting depth was reduced. Based on the size and number of rock fragments, a small 

fractal dimension produced large size and small number of rock fragments, thus indicating that 

rock was not seriously broken. By contrast, a big fractal dimension produced large number and 

small size of rock fragments. Therefore, the fractal dimension of the cutting load time series could 

be used to evaluate the extent of rock cutting or crushing. 

 
(a) 15 mm 

 
(b) 20 mm 

Fig. 10. Fractal dimension of cutting load with different cutting depth 

4.2.2. Cutting velocity 

The double logarithmic curves with the cutting velocity of 0.5 m/min and 4 m/min are shown 

in Fig. 11. The correlation coefficients were all higher than 0.99, thus indicating that the cutting 

velocity did not affect the fractal feature of the time series. The fractal dimension was equal to 

1.55 at the cutting velocity of 0.5 m/min, and to 1.48 at the cutting velocity was 4 m/min. The 

time series with low cutting velocity had high self-similarity, and was capable of filling the phase 

space of the cutting system. Based on energy dissipation, a bigg fractal dimension with a low 

cutting velocity highly dissipated the energy of cutting system. With regard to size distribution, a 

low cutting velocity produced small fragments and big fracture areas, thus indicating that the 

energy required to generate a new fracture surface is big based on Griffith theory [28]. A low 

velocity could break down big fragments more than twice, and a high velocity might cause big 

fragments fly off from the motion path of cutter, thus preventing them from being broken down 

further. Therefore, the fractal dimension of the time series with a high velocity was smaller than 

that of the time series with a low velocity. Based on theory of rock crushing, the extent of rock 

crushing is high when the impact velocity is also high. However, the opposite is true regard to 

cutting velocity, as mentioned earlier. The present phenomenon could probably be attributed to 

rock fragments being crushed more than twice by the cutter during rock cutting. Therefore, the 

influence of cutting velocity on rock crushing and cutting performance should be investigated 

further. 
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(a) 0.5 m/min 

 
(b) 4 m/min 

Fig. 11. Fractal dimension of cutting load with different cutting velocity 

4.2.3. Types of assisted waterjet 

High-pressure waterjet has been widely used in rock cutting, however, the fracture mechanism 

of the involved process remains unclear because of the opacity and damage instantaneity of the 

rock. To determine the rock fracture mechanism with different types of assisted waterjet (Fig. 1), 

this study investigates the fractal dimension of the cutting load time series. The double logarithmic 

curves under the waterjet front of the cutter or behind of the cutter are shown in Fig. 12. The 

correlation coefficients were higher than 0.99, thus indicating that such types of the assisted 

waterjet had an insignificant on fractal feature. The fractal dimension of the cutting load changed 

remarkably when the fracture mechanism of the rock was changed [3]. However, the difference 

in fractal dimension of the two different types was small, thus indicating that the fracture 

mechanism of rock cutting was unchanged by these types of waterjet. The waterjet in front of the 

cutter could decrease cutting load because of the the damage on the caused by the impact of the 

waterjet [29], however, the waterjet is used to clear fragments and to lubricate the cutter when it 

is behind of the cutter. 

 
(a) Waterjet front of the cutter 

 
(b) Waterjet behind of the cutter 

Fig. 12. Fractal dimension of cutting load with different assisted waterjet types 

5. Conclusions 

This study investigates the nonlinear dynamic characteristics of the cutting load time series 

based on chaos and fractal theories. The following conclusions are made based on our 

investigation: 

(1) The crushing zone, local breaking, and the avalanche of rock fragments occur alternately, 
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thus producing several small pecks between the two large adjacent peaks. The change in the 

aperiodicity of the amplitude and the wavelength of the cutting load signal reflects the discreteness 

and irregularity in rock cutting. 

(2) The power spectrum of the cutting load time series reflects a continuous, broadband, 

nondominant frequency, and a wide-band noise. The time series of denoising via the wavelet 

method can improve the deterministic components of the cutting system. The reconstructed phase 

space of denoising produces an unambiguous and self-organizing strange attractor. The maximum 

Lyapunov exponent of the load time series is equal to 0.065 according to the small data method. 

These results confirm the chaotic dynamic characteristics of the rock cutting time series. 

(3) The difference in cutting depth, cutting velocity, and types of assisted waterjet all cannot 

change the fracture mechanism in rock cutting. The fractal dimension has a negatively correlated 

to the size of rock fragments, and can be used as an evaluation index for the extent of rock cutting 

or crushing. The waterjet in front of the cutter can decrease the cutting load because of the damage 

on rock by waterjet, however, the waterjet is used to clear fragments and to lubricate the cutter 

when it is behind of the cutter. 
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