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Abstract. A model is proposed to study the dynamic response of cargo pendulum vibrations.  
Equations of motion are obtained by Lagrange equations using Lagrange multiplier. Two 
independent bumpers of the securing cargo are considered in the model. Bumpers forces are 
represented by a special stiffness and damping as a function of phase coordinates. Investigation 
was performed for: a) transient motion from free initial conditions; b) stationary motion 
excitation from constrained string or hull bumpers vibrations; c) joint transient and excitation 
motion take into account random parameters. Results of investigations may be used for cargo 
fastening inside trailer, ship or airplane. 
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Introduction 

During transportation cargos are subjected to various vibrations and acceleration 
forces. These forces are caused by many factors from road vehicles engine and transmission 
systems, uneven roads, the shunting of rail cars, cargo handling at terminals and docks and the 
pitching, yawing and rolling of a ship at sea [1]. One of the important types of cargo vibration 
system is pendulum motion that imitates ship-mounted cranes (Fig. 1.). Simulation and 
experimental results of the special controlled cranes for different operating conditions and 
payload masses are investigated in many research works, e.g. [2-4]. Analysis of publications 
revealed that motion of cargo with additional shocks is not fully investigated [5]. Therefore, this 
is the object of research in this paper, where traditional models of simple pendulum with rigid 
hoisting cable and a lumped mass at the end of cable are observed (Fig. 1.). Oscillations in 
machines are invariably nonlinear. This is either because of inertial coupling effects between 
different motions of the moving components, material and constitutive phenomena giving rise to 
stiffness modifications, nonlinear dissipation mechanisms, large deflections, or, as in most case - 
some sort of combination of all of these. The net effect of nonlinear vibrations is that at best the 
machine may well behave a little differently from the way the designer intended, or at worst, in a 
manner which renders it completely unsuitable for the job. The extent of such problems depends 
on the nature and the scale of the nonlinearities that are present but it is safe to say that 
nonlinear oscillations can rarely be completely overlooked in design and analysis of precision 
machinery.  

The unifying theme in this paper is pendulum motion, firstly in the case of a mobile gantry 
crane for container stacking where we wish to minimize such motion and converge on a target, 
and then secondly in the case of a vibration absorber in which we choose to initiate pendulum 
motion within a special absorber, for the purposes of vibration minimization. The third example 
involves the potential for pendulum motion at a very much larger scale and summarizes the main 
control problem that is likely to be encountered in a fully deployed momentum exchange 
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propulsion tether operating in space. The paper discusses the general mathematical issues that 
pertain to pendulum motion in each of the three cases [6]. Static stiffness of tower cranes is 
studied by using the proposed formulations and finite element method. A reasonable control 
value based on theoretical calculation and finite element method must be obtained and verified 
via collected field data. The results obtained from the finite element analysis must then be 
compared with the collected field data and that by the proposed formula. Corresponding to 
theoretical formulations and field data, it is deemed that the results of finite element analysis are 
closer to the actual data [7]. 

 

  

Fig. 1. http://www.pmel.noaa.gov/vents/nemo1999/images/elevatorrecovery2.jpg 

 
Equations of pendulum motion  
 

Pendulum relative motion along sphere as mathematical point has constraint (1): 
 

0),,( =zyxf  or  ( ) ,02222 =−−++ Lzhyx  (1) 

 

where x, y, z – coordinates of center mass; L – theoretical length of cable till pendulum centre; h 
– constant (Fig. 2.). 

For motion investigation it is convenient to use first form of Lagrange differential equations 
with Lagrange multiplier λ. For this reason normal reaction N of constraint is equal (2): 
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Fig. 2. Mathematical model of pendulum with one bumper 

Pendulum has two degree of freedom. To use x and y like independent coordinates from 
equation (1) must be finding: 
 

( ) ;0=⋅−−⋅+⋅ zzhyyxx ɺɺɺ  

 

( ) .0222 =⋅−−+⋅++⋅+ zzhzyyyxxx ɺɺɺɺɺɺɺɺɺɺ  

 

(3) 

 
Therefore from Newton’s second law and equations (1), (2) and (3) accelerations yx ɺɺɺɺ ,  may be 

determined in the form:  
 

);,,,,( tyyxxxx ɺɺɺɺɺɺ =  
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Single-bumper pendulum model 

Differential equations of motion are: 
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( ) ;2)1(15,0),(1)1( xxsignxxBAxm ⋅⋅+∆+−⋅⋅=+ λɺɺɺ  

;2)2( yAym ⋅⋅=+ λɺɺ  

( ),2)3( zhgmAzm −⋅⋅−⋅−=+ λɺɺ  

 

(3) 

 
where m – mass; g – acceleration of free fall; A1, A2 and A3 – translation acceleration of 
reference system along x, y, z axis (Fig. 2.); ))1(1(5,0),(1 ∆+−⋅⋅ xsignxxB ɺ  – reaction of 

bumper interaction along x axis; −∆1 gap along x axis. 
For the single-bumper model the results of investigation (3) are presented in Figs. 3-6. The 

results indicate that (for vibration damping) bumper must be soft and gap negative (then 
vibration damping is efficient). 
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Fig. 3. Displacement of mass along x axis in time 

domain without hull vibration  
Fig. 4. Velocity of mass along x axis in time 

domain without hull vibration 
 

 

0 200 400
0.5

0

0.5

1

1.5

xn

t n  

Fig. 5. Motion in phase plane  Fig. 6. Displacement of mass along x axis in 
time domain with hull vibration 

 
Double-bumper pendulum model 
 

Double-bumper model is depicted in Fig. 7. It includes two independent bumpers.  
There is not a right angle between bumpers ( 2/πϕ ≠ ) and forces are represented by a 

special stiffness and damping functions like equations (3).  

Differential equations of motion are: 
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Fig. 7. Mathematical model of pendulum with two bumpers 
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Results of modeling are presented in Figs. 8-11. 
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Conclusions  

 
Mathematical modeling and optimization of geometric parameters such as length of string 

and gap between bumpers and pendulum demonstrates that processes of transient motion are 
very short when gap is “negative”. Additionally, results indicate that angle ϕ can be less than 
π/2. Special harmonic frequency can induce vibro-shock motion with large amplitude. 
Recommendations arising from this research work may be used for cargo fastening inside trailer, 
ship or airplane. 
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