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Abstract. Substructuring is to subdivide an overall structure into two or more substructures to 
reduce the model-order of the huge structural system. The problem to synthesize the 
substructures is established by a mathematical system consisting of equilibrium equations and 
prescribed compatibility conditions. Considering that the compatibility conditions are 
constraints, this study derives the analytical methods for describing the responses of constrained 
static and dynamic systems and provides a structural synthesis method based on the Guyan 
condensation method and the derived equations. The analysis process is carried out by 
partitioning into two regions of interior and boundary regions, and giving the compatibility 
conditions. And the dynamic analysis reduces model-order based on the constraint conditions 
between modal coordinates by the first several mode shape matrix. The validity of the proposed 
method is illustrated through the structural synthesis of stable and unstable substructures, and 
the structural reanalysis to evaluate the structural response for changes in the design without 
solving the complete set of modified simultaneous equations. 
 

Keywords: substructures, compatibility, constraints, structural synthesis, equilibrium equation, 
mode shape. 
 
1. Introduction 
 

Substructuring includes a procedure that condenses a group of finite elements into one 
element represented as a matrix. The substructuring is to reduce computer time and to allow 
solution of very large problems with limited computer resources. A very large structural system 
is composed of substructures interconnected by springs and supports. The entire structure keeps 
the static equilibrium state by reactions and resists the externally provided vertical as well as 
lateral loads. Such structures include grid structures, longitudinal trusses, and slabs as 
diaphragms subjected to lateral forces, etc. The increase in the number of structural components 
yields a number of compatibility conditions and reaction forces to be determined, and requires 
more simplified analysis. Based on elastic analysis, the proper structural analysis depends on 
the determination of constraint forces at the interfaces of substructures to satisfy the given 
compatibility conditions. 

There has been much research to consider structural synthesis of substructures.  
Substructure coupling methods are the techniques to reduce the model-order of huge structural 
systems. Hurty [1] introduced the component mode synthesis (CMS) method in 1960. The 
method is to combine subdivided substructures into an approximate mathematical model of the 
full structural system using the displacement constraints and the interface forces at the 
interfaces. A number of variants of the methods were proposed and employed [2-7].   

Structural reanalysis refers to the analysis of a structure which has been slightly 
modified by the addition or deletion of structural members as substructures and is to evaluate 
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the structural response for changes in the design without solving the complete set of modified 
simultaneous equations. The combined approximations approach to combine local and global 
approximations was developed for linear static reanalysis [8]. Kirsch [9] presented a general 
approach for structural optimization and the method integrated the constraint values and 
constraint derivatives into an effective optimization procedure. Kirsch and Papalambros [10] 
proposed a method not based on calculation of derivatives unlike common approximations of 
the structural response and the proposed method was illustrated in different types of design 
variables and structures. It is necessary to satisfy the compatibility conditions between 
substructures in combining the substructures into an entire structure. The CMS method has been 
derived based on the constraint conditions and the interface forces requirement, and leads to 
model-order reduction.   

This study proposes static and dynamic methods to describe the constrained responses 
and to synthesize fixed-free or free-free end substructures into a complex structure in the 
satisfaction of the compatibility conditions. The synthesis approach is performed by partitioning 
into two regions of interior and boundary regions based on the Guyan condensation method [11] 
and the derived equations. All the DOFs except the interface are eliminated by means of static 
reduction to generate system matrices exclusively concerning the interface DOF. And the 
dynamic analysis reduces model-order based on the constraint conditions between modal 
coordinates by the first several mode shape matrix. The validity of the proposed method is 
illustrated through the structural synthesis of stable and unstable substructures, and the 
structural reanalysis to evaluate the structural response for changes in the design without 
solving the complete set of modified simultaneous equations. 
 
2. Description of constrained responses 
 
2.1 Constrained equation of static systems 

Static responses of many practical structural systems are affected by the constraint 
conditions that include the support conditions, the compatibility conditions in structural systems 
and geometric requirements, etc. If constraints are given to a static system, the initial 
equilibrium equation must be modified to satisfy them.   

The existence of the constraints needs to determine the displacement or force 
variations to be deviated from the initial state. The constraint forces prevent the system from 
deviations of the constrained manifold and are expressed by stiffness variation. The equilibrium 
equation of the constrained system is derived by combining the equilibrium equation of initial 
unconstrained system and the constraint equations. 

Expressing that 
aK  is an nn×  stiffness matrix of initial system, û  is an 1×n  

displacement vector, and F is an 1×n  given force vector, the equilibrium equation of the initial 
system can be written by 

 

   FuK =ˆa .      (1)  
 

The displacements of the system are calculated by 
 

   FKu 1ˆ −= a ,      (2) 
 

where û  represents the initial displacement vector. And assume that the responses of the static 
system are restricted by m constraints  
 

   bAu = .      (3) 
 

where A is an ( )nmnm <×  coefficient matrix, b  indicates the 1×m  vector and u  is the 1×n  

actual displacement vector.   
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The displacements due to the existence of the constraints do not satisfy the equilibrium 
equation of Eqn. (1) and the equilibrium equation should be modified by the corrected stiffness 
matrix K   
   FKu = ,      (4) 
 

where we assume that the external force vector F  is not changed. 
The constraint force vector can be expressed as a function of the newly updated 

stiffness matrix. It can be obtained by minimizing a cost function in the satisfaction of the 
constraints. This study utilizes the cost function written as 

 

   ( ) 2/1112/1

2

1
aaaJ KKKK −− −= .    (5) 

 

Inserting Eqn. (4) into Eqn. (3), it can be written as 
 

   bFAK =−1 .      (6) 
 

Equation (6) is modified for minimizing the cost function as  
 

 bFKKKKAK =−−− 2/12/112/12/1
aaaa .      (7) 

 

Letting 2/1−= aAKR  which is an nm×  rectangular matrix and FKD 2/1−= a
, and solving Eqn. (7) 

with respect to DKKK 2/112/1
aa

−  based on the generalized solution of Moore-Penrose inverse [12], 

we obtain that 
 

  ( )yRRIbRDKKK ++− −+=2/112/1
aa

,     (8) 
 

where y is an arbitrary vector, ‘+’ denotes the Moore-Penrose inverse and I is an identity matrix.  
Inserting the condition to minimize the cost function of Eqn. (5) into Eqn. (8) and solving the 
result with respect to the arbitrary vector, we obtain that 
 

  ( )( ) RzRbRDRRIy +++ +−−= ,     (9) 
 

where z is an arbitrary vector. Substituting Eqn. (9) into Eqn. (8), it can be written as 
 

  RDRDbRDKKK ++− −+=2/112/1
aa

.     (10) 
 

Again, solving Eqn. (10) with respect to 2/112/1
aa KKK − , it follows that 

 

  ( ) ( )++++− −+−+= DDIhDRDRDbRKKK 2/112/1
aa

,   (11) 
 

where h is an arbitrary matrix. Using the condition to minimize the cost function of Eqn. (5) 
into Eqn. (11) and solving the result with respect to the arbitrary matrix, we obtain that 
 

 ( )[ ]( ) +++++++ +−=+−−+−= sDDDDIsDDDDIDRDRDbRIh ,  (12) 
 

where s is an arbitrary matrix. The substitution of Eqn. (12) into Eqn. (11) results in  
 

  ( ) IDRDRbRKKK +−= +++− 2/112/1
aa

.    (13) 
 

Premultiplying and postmultiplying both sides of Eqn. (13) by 2/1−
aK , the inverse of the updated 

stiffness matrix is derived as 
 

  ( ) ( )( ) 2/12/12/12/111 ˆ −+−+−−−− −+= aaaaa KFKuAbAKKKK .  (14) 
 

Equation (14) represents the inverse matrix of the corrected stiffness matrix due to the existence 
of the constraints and incorporates the constrained effects. Substituting Eqn. (14) into FKu 1−=  
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with the property of ( ) 12/12/1 =−+− FKFK aa
, the equilibrium equation of constrained static system 

can be derived 
 

  ( ) ( )uAbAKKuu ˆˆ 2/12/1 −+=
+−−

aa .     (15) 
 

It is observed that this result corresponds with the one provided by Eun, Lee and 
Chung [13]. The second term of the right-hand side of Eqn. (15) denotes the displacement 
variation deviated from the initial state and the constraint force vector is obtained by 
premultiplying 

aK  on its second term as 
 

  ( ) ( )uAbAKKF ˆ2/12/1 −=
+−

aa
c .     (16) 

 

The derived equilibrium equation can be utilized in synthesizing partitioned 
substructures into an entire complex system by combining the equilibrium equations of all the 
substructures and the compatibility conditions.   
 
2.2 Constrained dynamic systems 
 

The constraint forces for dynamic systems are expressed by the mass variation of 
inertia force term unlike the static systems. Let us assume the stiffness and mass matrices of 
initial dynamic system to be 

aK  and 
aM , respectively. The dynamic responses of a system 

which is assumed to be linear and approximately discretized for n degrees of freedom (DOFs) 
can be described by 
 

( )ta fKqqCqM =++ ɺɺɺ ,      (17) 
 

where [ ]Tnqqq ⋯21=q , nnR ×∈C  and nnR ×∈K  are the damping and stiffness matrices, 

respectively.  Or the dynamic equations can be expressed in matrix form as  
 

  ( )ta ,,qqFqM ɺɺɺ = ,       (18) 
 

where ( ) ( )tt fKqqCqq,F +−−= ɺɺ , . The acceleration vector of unconstrained dynamic system, 

( )t,,qqa ɺ , can be written as 
 

  FMa 1−= a
.       (19) 

 

Let us assume that the system is constrained by m  constraint equations expressed as 
 

  ( ) ( )tt ,,,, qqbqqqA ɺɺɺɺ = ,      (20) 
 

where A is an nm×  matrix and b  is an 1×m  vector. It is known that the dynamic responses of 
constrained system must satisfy the constraint equations at all times during numerical 
integration. The corrected mass matrix incorporates the constraint forces required for satisfying 
the constraints. The constrained dynamic equation due to the constraints such as Eqn. (20) is 
modified by 
 

  ( )tfKqqCqM =++ ɺɺɺ ,      (21) 
 

whereM denotes the corrected mass matrix.   
The cost function for predicting the corrected mass matrix is written as 
 

  ( ) 2/1112/1

2

1
aaaJ MMMM −− −= .     (22) 
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The corrected mass matrix can be obtained by minimizing the cost function of Eqn. (22). 
Utilizing Eqn. (21) into Eqn. (20), it follows that 
 

  ( ) bfKqqCAM =+−−−
ɺ

1 ,     (23) 
 

And the modification of Eqn. (23) leads to  
 

  baMMMMAM =−− 2/12/112/12/1
aaaa ,     (24) 

 

where a  represents the acceleration vector of unconstrained system of Eqn. (19). Letting 
2/1−= aAMR  and solving Eqn. (24) with respect to aMMMM 2/12/112/1

aaa
− , it follows that 

 

  ( )yRRIbRaMMMM ++− −+=2/12/112/1
aaa ,    (25) 

 

where y  is an arbitrary vector. Utilizing the condition to minimize Eqn. (22) into Eqn. (25), it 

satisfies 
 

  ( ) aMyRRIbR 2/1
a=−+ ++ .     (26) 

 

Solving Eqn. (26) with respect to the arbitrary vector, we obtain that 
 

  ( )( ) RzRbRaMRRIy +++ +−−= 2/1
a ,    (27) 

 

where z is another arbitrary vector.  The substitution of Eqn. (27) into Eqn. (25) yields  
 

  aRMRaMbRaMMMM 2/12/12/12/112/1
aaaaa

++− −+= .   (28) 
 

Again, solving Eqn. (28) with respect to 2/112/1
aa MMM − , it can be written as 

 

( )( ) ( )( )[ ]++++− −+−+= aMaMIraMaRMRaMbRMMM 2/12/12/12/12/12/112/1
aaaaaaa , (29) 

 

where r is an arbitrary matrix.  Using the condition to minimize Eqn. (22) into Eqn. (29), it 
follows that 
 

 ( )( ) ( )( )[ ] IaMaMIraMaRMRaMbR =−+−+
++++ 2/12/12/12/12/1

aaaaa .  (30) 
 

The unknown arbitrary matrix r  can be obtained by solving Eqn. (30) as 
 

 ( )( ) ( )( )++
+−= aMaMdaMaMIr 2/12/12/12/1

aaaa ,    (31) 
 

where d is an arbitrary matrix. Substituting Eqn. (31) into Eqn. (29) and arranging the result 

with  ( )( )[ ] ( )( )[ ] ( )( )+++
−=−− aMaMIaMaMIaMaMI 2/12/12/12/12/12/1

aaaaaa
, we obtain that 

 

   ( )( ) IaMaRMRbRMMM +−=
+++− 2/12/12/112/1

aaaa .   (32) 
 

Premultiplying and postmultiplying both sides of Eqn. (32) by 
2/1−

aM , the inverse of 
the corrected mass matrix can be written as 
 

  ( ) ( )( ) 2/12/12/12/111 −++−−−− −+= aaaaa MaMAabAMMMM .  (33) 
 

Inserting Eqn. (33) into Eqn. (21), the acceleration vector of the constrained system with the 
relation of ( ) ( ) IfKqqCMaM =+−−−+

ɺ2/12/1
aa

 can be obtained as 
 

  ( ) ( )AabAMMaq −+=
+−− 2/12/1

aaɺɺ .     (34) 
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Premultiplying both sides of Eqn. (34) by 
aM , the second term of the result represents the 

constraint force vector as 
 

  ( ) ( )AabAMMF −=
+− 2/12/1

aa
c .     (35) 

 

The dynamic equation and the constraint force vector derived in this study exactly 
correspond with the ones provided by Udwadia and Kalaba [14] although the starting points are 
different. The equation can be utilized in combining subdivided substructures by constrained 
conditions into a huge dynamic system. 
 
3. Synthesis of partitioned substructures 
 
3.1 Static synthesis of substructures 

This section considers the analytical method to synthesize partitioned substructures 
into an entire complex structure based on the derived equation. Let us consider an initial system 
shown in Fig. 1(a). The static equilibrium equation of the initial system 1 described by an 1×n  
displacement vector )1(u  can be written as 

 

  )1()1()1( fuK =        (36) 
 

where the superscript (1) denotes the initial system, )1(K  is an nn×  positive-definite stiffness 
matrix and )1(f  is an 1×n  force vector. 
 

 
(a) 

 

 
(b) 

Fig. 1. Synthesis of substructures; (a) two substructures, (b) several substructures 
 

 
 
Let us assume that a subsystem 2 is newly interconnected to the initial system shown 

in Fig. 1(a).  Describing its static responses by 1×r  displacement vector )2(u , its equilibrium 
equation is written as 

 

  )2()2()2( fuK = ,       (37) 
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where the superscript (2) represents the subsystem interconnected to the initial system and )2(K  
is an ( )rr ×  positive-definite stiffness matrix. Let us partition the initial system and the 

subsystem into two regions of interior and boundary, respectively.  

Expressing the partitioned displacements of the initial system as [ ]Tba
)1()1()1( uuu =  

where )1(
au  denotes an 1×m  interior displacement vector and )1(

bu  is an ( ) 1×−mn  boundary 

displacement vector, the equilibrium equation can be written as 
 

  







=
















)1(

)1(

)1(

)1(

)1()1(

)1()1(

b

a

b

a

bbba

abaa

f

f

u

u

KK

KK
.     (38) 

 

Similarly, the equilibrium equation of the subsystem can be expressed as 
 

  







=
















)2(

)2(

)2(

)2(

)2()2(

)2()2(

b

a

b

a

bbba

abaa

f

f

u

u

KK

KK
,     (39) 

 

where [ ]Tba
)2()2()2( uuu =  and )2(

au  denotes ( ) 1×−mn  boundary displacement vector and )2(
bu  

represents ( ) 1×+− mnr  interior displacement vector. Solving the first equation of Eqn. (38) 

with respect to )1(
au , it can be expressed as 

 

  [ ])1()1()1(1)1()1(
ababaaa fuKKu −−=

−
     (40) 

 

And solving the second equation of Eqn. (38) with respect to )1(
bu , substituting Eqn. (40) into 

the result, and arranging it, we obtain that 
 

   *)1(*
bbb fuK = ,       (41) 

 

where )1(1)1()1(1)1(*
abaababbb KKKKIK

−−
−=  and )1(1)1()1(1)1()1(1)1(*

aaababbbbbb fKKKfKf
−−−

−= . 

By the similar procedure, Eqn. (39) can be resolved as 
 

  [ ])2()2()2(1)2()2(
bababbb fuKKu −−=

−
,     (42) 

 
  *)2(*

aaa fuK = ,       (43) 
 

where )2(1)2()2(1)2(*
babbabaaa KKKKIK

−−
−=  and )2(1)2()2(1)2()2(1)2(*

bbbabaaaaaa fKKKfKf
−−−

−= .   

The entire system must satisfy the compatibility conditions at the interfaces between 
the initial and added structures. The compatibility conditions at the ( )mn −  interfaces can be 

written as 
 

  )2()1(
ab uu = .       (44) 

 

Substituting the equilibrium equations of Eqns. (41) and (43), and the constraint equation of 
Eqn. (44) into Eqn. (15), and solving it, the static responses at the interfaces are calculated and 
the substitution of the results into Eqns. (40) and (42) leads to the displacements of the interior 
regions of the initial system and the subsystem. It is investigated that the structural analysis of 
the entire structure is performed by two stages on the boundary regions and the interior regions. 

The proposed equation is extended to a generalized method to synthesize a series of 
substructures. Let us consider the structural synthesis of an entire system composed of an initial 
system and two or more subsystems shown in Fig. 1(b). And assume that the stiffness matrices 
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of all substructures are full-rank. The equilibrium equations of the initial system and the ( )1−s  

subsystems can be written as 
 

  







=
















)1(

)1(

)1(

)1(

)1()1(

)1()1(
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b
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f

f

u

u

KK

KK
,     (45a) 
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=
















)(

)(

)(
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)()(

)()(

s
b

s
a

s
b

s
a

s
bb

s
ba

s
ab

s
aa

f

f

u

u

KK

KK
,     (45d) 

 
where the superscript (1) denotes the initial system, the subscript ‘b’ in Eqn. (45a), the ‘a’ and 
‘c’ in Eqns. (45b), (45c) and (45d) denote the boundary regions. And the subscript ‘a’ in Eqn. 
(45a) and ‘b’ in Eqn. (45d) represent the interior regions.  

The displacements between two adjacent systems must satisfy the compatibility 
conditions. The ( )1−s  compatibility conditions can be written as 

 
  )2()1(

ab uu = .       (46a) 

 
  ⋯

)3()2(
ac uu = .       (46b) 

 
  ⋯

)()1( i
a

i
c uu =− .       (46c) 

 
  )()1( s

a
s

c uu =− .       (46d) 

 
The first and second equations of Eqn. (45a) for the initial system can be written as 
 
  [ ])1()1()1()1()1(

ababaaa fuKuK −−= ,     (47) 

 
                )1()1()1( ˆˆ fuK =b

,      (48) 
 

where )1(1)1()1(1)1()1(ˆ
abaababb KKKKIK

−−
−=  and )1(1)1()1(1)1()1(1)1()1(ˆ

aaababbbbb fKKKfKf
−−−

−= . 

And Eqn. (45b) can be solved as 
 

  [ ])2()2()2()2()2(1)2()2(
acacbabaaa fuKuKKu −+−=

−
,    (49a) 
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  [ ])2()2()2()2()2(1)2()2(
bcbcababbb fuKuKKu −+−=

−
,    (49b) 

 

  [ ])2()2()2()2()2(1)2()2(
cbcbacaccc fuKuKKu −+−=

−
.    (49c) 

 

Solving the three simultaneous equations of Eqns. (49) with respect to )2(
au , )2(

bu  and )2(
cu , they 

can be derived as 
 

  )2()2()2( ˆˆ
aaa fuK = ,       (50a) 

 

  )2()2()2( ˆ
bbbb fuK = ,       (50b) 

 

  )2()2()2(
2

)2()2( ˆˆˆˆ
ccacc ffKuK += ,     (50c) 

 

where  
 

( )( )
( )[ ] )2(1)2()2(1)2()2(1)2()2()2(1)2(

1
)2(1)2()2(1)2()2()2(1)2()2(1)2()2(ˆ

babbabaababbcbcacc

bcbbcbccacbcbbabaaa

KKKKIKKKKK

KKKKIKKKKKK
−−−−

−−−−−

−+−

⋅−−=
, 

 

( )( )
( ) )2(1)2()2(1)2()2(1)2()2(1)2()2(1)2()2(1)2(

1
)2(1)2()2(1)2()2()2(1)2()2(1)2()2(ˆ

aaabbbabaacccbbbcbcc

bcbbcbccacbcbbabaaa

fKfKKKfKfKKK

KKKKIKKKKKf
−−−−−−

−−−−−

+−+−

⋅−−−=
,   

 
 

)2()2(1)2()2()2(1)2()2(
2

1)2()2()2(1)2()2()2( ˆˆˆˆˆˆˆˆˆ
bccbcaaacbcaabab ffKKfKKKKfKKf +−−−=

−−−−
, 

 

)2(1)2()2(1)2()2(ˆ
bcbbcbccc KKKKIK

−−
−= , 

 

[ ])2(1)2()2()2(1)2()2(
2

ˆ
babbcbcacca KKKKKK

−−
−−= , 

 

)2(1)2()2(1)2()2(1)2()2(ˆ
cccbbbcbccc fKfKKKf

−−−
+−= . 

 

The equilibrium equations at the boundary regions of the initial system and the first 
subsystem are obtained by substituting Eqns. (48), (50a) and (46a) into the equilibrium 
equations of Eqn. (15). And the displacements at the interior region of the initial system are 
calculated by solving Eqn. (47) from the displacements at its boundary. Repeating such process 
between two adjacent subsystems such as the first and second subsystems, the second and third 
subsystems, etc., we can obtain the equilibrium equations on the boundary regions of all 
subsystems. They can be written as 
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where ( )i  indicates the i-th subsystem. 

The static behavior at the constrained boundary regions on the s subsystems is 
described by substituting the equilibrium equations of Eqn. (51) and the compatibility of Eqns. 
(46) into Eqn. (15). The equilibrium equations to describe the interior regions of the s 
subsystems can be assembled as 
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The derived solutions can be utilized based on the assumption that the stiffness matrices are 
full-rank. The following section considers the method to synthesize the floating subsystems of 
free-free end conditions.   
 
3.2 Static synthesis of floating substructures 
 

The derived method was obtained based on the assumption that the stiffness matrix is 
positive-definite full-rank matrix. When the substructure has rigid body modes, the stiffness 
matrix becomes semi-positive definite. The method can not handle the synthesis of unstable and 
stable structures because the unstable structure has the stiffness matrix of rank deficiency. The 
derived method should be modified to utilize in describing the static responses to synthesize 
partitioned floating substructures.   

Consider the synthesis of a stable fixed-free system 1 and an unstable free-free system 
2 to be depicted in Fig. 2(a). The systems have a single DOF at each node, horizontal 
displacement. The two systems are interconnected at nodes n  or r . The equilibrium equations 
of the systems 1 and 2 are written as 
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where 
iu  ( ni ,,2,1 ⋯= ) and '

ju  ( rj ,,2,1 ⋯= ) are the displacements of the 

systems 1 and 2, respectively. And 
if  and '

jf  represent the applied forces of the systems 1 and 

2, respectively. 
 
 

 
(a) 

 
(b) 

Fig. 2. A synthesis of fixed-free end and free-free end substructures; (a) two substructures, (b) a 
synthesized entire structure 
 

 
The subsystem 2 has free-free end conditions and the rank of its stiffness is 1−r . The 

two systems can not be synthesized based on the derived equation because the stiffness matrix 
is not full-rank, and the equation should be modified. The entire system of ( )rn +  DOFs of the 

systems 1 and 2 is described by the ( )1−+ rn  displacements excluding the common 

displacement at the interface. The compatibility condition at the interface between adjacent 
subsystems can be written as 
 

   '
rn uu = .      (54) 

 

As shown in Eqn. (54), the displacement at the interface is described by a single displacement 

nu or '
ru . Extracting only the equilibrium equations at the interface from the last equations of 

Eqns. (53a) and (53b), they can be written as  
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The modified stiffness matrix exhibits a full rank, and the substitution of Eqns. (54) 

and (55) into Eqn. (15) yields 
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Thus, the two displacements can be calculated as 
 

  ( )[ ]'
1

'2
1

1
21

' 1
−− ++

+
== rrrnn

rn
rn ufkuk
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uu .   (57) 

The entire system is explicitly described by total ( )1−+ rn  equations of Eqn. (57) and ( )2−+ rn  

equations to insert Eqn. (57) into Eqns. (53). From the derivation, it is known that the proposed 
method can be utilized in the synthesis method of substructures to include floating 
substructures.     

The following considers the synthesis of substructures bonded at many overlapped 
interfaces. For two substructures with overlap as depicted in Fig. 3, neighboring substructures 
are allowed to have common, or overlap, members. The system has a DOF at each node, 
horizontal displacement. An end must be supported to be a stable structure. Let us assume that 
the two substructures 1 and 2 have ),( rmnmm <<  common points of the substructures 1 and 

2 to have n and r DOFs, respectively. The equilibrium equations are expressed as 
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where i  and b  indicate internal and boundary DOFs, respectively.  The substructure 2 is a 
floating structure with the stiffness matrix of rank ( )1−r  and the entire structure is described in 

( )mrn −+  configuration space.   
 

 
Fig. 3. Two overlapped substructures 
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The m  compatibility conditions between the neighboring substructures can be written as 
 

   21
bb uu =  ,      (59) 

 

where 1
bu  and 2

bu  are 1×m  vectors. The m2  equilibrium equations related to the boundary 

displacements of the two substructures are written as 
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The compatibility conditions of Eqn. (59) can be written in a matrix form 
 
   0Au =b ,      (61) 

where A is an mm 2×  Boolean matrix whose elements are 0, -1 or 1, and [ ]TT

b

T

bb
21 uuu = .  

The substitution of Eqns. (60) and (61) into Eqn. (15) leads to the equilibrium equations 
expressed by the displacements at the interfaces to satisfy the compatibility conditions.  
Inserting their substitution into Eqns. (58) which are the equations to describe the interior 
regions, the static behavior of the entire structure can be obtained.   
 
3.3 Dynamic synthesis of subsystems 
 

By the similar process as the static approach, the dynamic equations of each 
substructure are firstly established and then they are combined based on the constraints of the 
dynamic responses at the interfaces between considered substructures. Assuming that the 
substructures in Fig. 1(a) are dynamic systems, let us consider the dynamic synthesis of the two 
dynamic substructures. The dynamic equations of two substructures can be written as 
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where )1(u  and )2(u  denote the 1×r  and 1×s  displacement vectors, respectively, and the second 
and first dynamic equations of Eqns. (62a) and (62b) represent the dynamic equations at 
boundary regions. The constraints that the dynamic responses at the ( )smrmm << ,  interfaces 

between adjacent subsystems are the same can be written as 
 

   )2()1(
ab uu = .      (63) 

 

Expressing the coupled dynamic equations of Eqns. (62) by the modal coordinates and 
the mode shape matrix corresponding to the first 1m  eigenvalues, they can be written as 
 

  )1()1()1()1()1( pqKqM =+ɺɺ ,      (64a) 
 

  )2()2()2()2()2( pqKqM =+ɺɺ ,     (64b) 
 

where [ ] )()()()( ii
TTi

b

Ti
a qφuu = , 2,1=i , )1(

φ  and )2(
φ  are 1mr×  and 

1ms×  mode shape 

matrices, respectively, )1(q  and )2(q  are 11 ×m  modal coordinate vectors. And 
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  )()()( iTii MφφM = ,      (65a) 
 

)()()( iTii KφφK = ,      (65b) 
 

  )()()( iTii pφp = ,   .2,1=i     (65c) 
 

It is observed that the dynamic equations of ( )sr +  DOFs are reduced to the decoupled 

dynamic equations of 
12m  DOFs.  And the constraint equations can be written as 

 

  )2()2()1()1(

11
qφqφ mmmm ×× = .      (66) 

 

Substituting Eqns. (64a), (64b) and (66) into Eqn. (34), it is found that the dynamic responses of 
the entire system can be described based on the modal coordinate vectors.  
 
4. Applications 
 
4.1 Application 1 

The validity of the proposed method is illustrated through two simple applications.  
First, consider a three-spring system of fixed-free end conditions shown in Fig. 4. Let us assume 
that the initial structure is partitioned by three substructures to be composed of a stable structure 
and two floating substructures. Inversely, the entire structure is formed by interconnecting the 
three substructures. The equilibrium equations of the substructures are expressed by 
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(a) 

 

 
(b) 

Fig. 4. A three-spring system; (a) three substructures, (b) an entire structure 
 

 
Although the floating substructures are independently unstable, they can be stable by 

restricting the horizontal displacements or providing the forces for keeping the equilibrium 
state. For the synthesis of the substructures, the following compatibility conditions at nodes 2 
and 3 are utilized: 
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   '
11 uu = ,       (68a) 

 

   '
22 uu = .       (68b) 

 

Equations (68) are modified to the equilibrium equations with respect to the displacements at 
the interfaces of substructures: 
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Utilizing Eqns. (68) and (69) into Eqn. (15), and introducing '
11 uu =  and '

22 uu =  

into the result, the final equations with the second equation of Eqn. (67c) are derived as 
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u += .      (70c) 

 

The derived results correspond with the equilibrium equations of the initial entire 
structure.  Although the considered application is a simple structure, its concept can be easily 
extended to complicated structures with various interfaces. 
 
4.2 Application 2 
 

This application is to carry out the structural reanalysis of modified structure to add a 
bar to the initial truss structure. Consider a plane truss structure shown in Fig. 5.  The nodal 
points and the members are numbered. Corresponding to each pair of nodal displacement 
components ( )ii vu ,  is expressed by a set of forces ( )ii VH , . The initial truss structure is subjected 

to kN100 and kN200  in the downward and right-hand side direction at nodes. All members have 
elastic modulus of GPa200  and cross-sectional area of 23m105.2 −× . The equilibrium equations 
of the truss are expressed by 
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Fig. 5. A modified truss structure; The dotted line indicates the added bar 
 
Premultiplying the inverse of stiffness matrix on both sides of Eqn. (71), the displacements of 
the initial truss can be obtained as 
 

 [ ] =Tvuvuvuu 5544332  

   [ ] mm4.198.102.203.18.16.73.1 T−−−−− . (72) 
 

Let us assume that we add a truss bar between nodes 3 and 5. The bar itself is unstable 
structure with free ends and can be stable structure by giving the forces for keeping the 
equilibrium state in plane. The forces are constraint forces and can be calculated by using 
compatibility conditions. 

The equilibrium equations of the truss bar corresponding to the displacements 
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The stiffness matrix of Eqn. (73) exhibits the floating mode without supporting conditions.   
Extracting the equilibrium equations corresponding to nodes 3 and 4 from Eqn. (71), 

respectively, they can be written as 
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And the equilibrium equations of the added bar of Eqn. (73) are modified by the stiffness matrix 
of full rank as 
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In order to establish the relationship between the initial truss and the bar, the 

compatibility conditions at nodes 3 and 4 between two structures are defined as 
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33 vv = ,       (76a) 
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The substitution of Eqns. (74), (75) and (76) into Eqn. (15) yields the following: 
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Substituting Eqns. (77) into the displacements of the initial truss of Eqn. (71), the static 

displacements of the modified truss as well as the displacement variations due to the 
modification can be explicitly calculated. Starting from the displacements of initial structure, 
this application exhibits that the proposed method can determine the structural responses for 
changes in the design from the constrained displacements at the interfaces using compatibility 
conditions without solving the complete set of modified simultaneous equations.  
 
5. Conclusions 
 

The problem on the structural synthesis of substructures interconnected by interfaces 
and overlapped points is established by a mathematical system consisting of equilibrium 
equations and prescribed compatibility conditions. Assuming that the compatibility conditions 
are constraints to govern the static or dynamic responses between adjacent subsystems, this 
study derived the constrained static and dynamic equations to describe their responses. The 
approach is carried out by partitioning into two regions of interior and boundary regions, and 
giving the compatibility conditions. The approaches can be extended to the synthesis of the 
unstable subsystems of free-free end conditions and the validity of the proposed method was 
illustrated in several applications. 
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