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Abstract. Dynamic response of a rigid frame on a steel columns is investigated. Free motion of 
the structure when deformations in the columns are elastic is discussed. Motion of the structure 
after horizontal impact and blast loading is investigated and axial and transverse velocities after 
the impact are assessed. Interconnection of the axial and the transverse column forces in the 
elastic and elasto-plastic deformation regions are considered. 
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Introduction 
 

Inelastic static analysis has become almost routine in the design practice, but dynamic 
analysis remains a challenge. The answer, given by Elnashai [1] to the question do we really 
need inelastic dynamic analysis, is: there will always be a domain where dynamic analysis is 
necessary, but the “necessity domain” is ever diminishing. Or may be the static domain is ever 
increasing, and this conclusion differs from the former. In plastic hinge theory it is assumed that 
the plastic deformation is concentrated on the two ends of a beam elements [2]. In the nonlinear 
dynamic analysis of frames subjected to distributed loads the moving node strategy is presented 
by Yan and Au [3]. A push-over analysis procedure based on continuous non-linear post-elastic 
material model is developed by Hasan, Xu and Grirson [4]. The technique provides the ability to 
monitor the progressive plastification of steel frame elements and structural systems under 
increasing intensity of earthquake ground motion. Interaction of column axial force and bending 
moment must be taken into account to predict axial displacements. Como, De Stefano and 
Ramasco [5] point out the progressive axial shortening of adjacent columns and remarkable 
amplification in beam plastic rotations as inelastic seismic response of steel frames. Both statical 
and kinematical approach are investigated by Benfratello, Cirone, Giambanco [6] in optimal 
design of steel frames subjected to cyclic loads. The typical Bree-like diagram discloses 
dependence of elastic shakedown, plastic shakedown or incremental collapse, instantaneous 
collapse dependence on fixed load versus cyclic load values. 

A second-order plastic-zone formulation for the non-linear analysis and design of steel 
frames is presented by Alvarenga, Silveira [7]. A beam-column finite element model based on 
Bernoulli-Euler theory is applied. The axial force iterative integration process is developed at 
elemental level. Aim of this process is to catch axial force balance and more closely follow the 
plasticity spread in a beam-column member. The behavior of structure due to blast loading is 
examined by Fischer, Haring [8]. A single degree of freedom (SDOF) model is accepted, a 
method to determine the best parameters of typical structural resistance functions for SDOF is 
introduced. The equivalent ersatz-system is realized with a lumped mass and idealized load 
resulting in one-dimensional deflection. Impact effect of sudden fracture at steel frame 
connections under severe earthquake or other extreme loads is presented by Chen, Bian, Liao 
[9]. Response model also is SDOF. If fracture in the frame occurs, the constraint condition of 
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connection can change immediately from completely rigid to ideal hinge. A new design-oriented 
methodology for progressive collapse assessment of floor systems within multi-storey buildings 
subjected to impact from an above failed floor is proposed by Vlassis et all [10]. The two 
extreme impact possibilities of fully rigid and fully plastic impact are determined. The strength, 
ductility supply and energy absorption capacity of the lower impacted floor are investigated. 
Some blast-resistant steel-framed buildings, anchored or free to slide, are examined by Summers 
[11]. Dynamic model and energetic fracture criterions during impact loading are investigated by 
Žiliukas, Gintalas [12]. 

In this paper response of a rigid frame on steel columns is investigated. The transverse and 
the axial displacements of the columns are considered, therefore a three-dimensional motion in a 
plane should be investigated. The distinctive feature of the structure is the substantial difference 
in rigidity to vertical and horizontal displacements. Influence of the rigidity and damping in the 
elastic region and possible extension to the elasto-plastic regions of deformation are discussed. 
Dependence of the horizontal force F  and the vertical axial force N  of the column on both 
horizontal w  and vertical u  displacements in the elasto-plastic region is a characteristic feature 
of the solution [13]. 
 
Free motion of structure 
 

The two columns 0B B  and 0D D  support a rigid structure, therefore the equal horizontal 

displacements u  of the hinges B , D , positive vertical displacementsBw , Dw  are depicted in 

Fig. 1. The angular velocity of the rigid structure ( )B Dw w lω = +ɺ ɺ . The cendroid C velocity 

components are ( ) 2CZ B Dw w w= +ɺ ɺ ɺ , ( )0CX B Du u n w w= + +ɺ ɺ ɺ ɺ , where 0 0n h l= , 0h  is the centroid 

height (Fig. 1). If rigidities of the columns 0B B , 0D D  are equal approximate values of the 

natural frequencies are 
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where m  is mass of the structure, xk , zk  are stiffnesses of the columns; C Ci I m= , CI  – 

moment of inertia of the structure with respect to the centroid vC  (Fig. 2). The axial stiffness zk  

significantly exceeds the lateral stiffness xk : 
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The frequency 1ω  in (1) is determined neglecting 2ε , while frequencies 2ω , 3ω  are 

expressed neglecting ε . 
If U , BW , DW  are amplitudes of the oscillations then the first natural frequency 1ω  

corresponds to the eigenmode B DU W Wε = = : that is rotation around the point Cω , and the 

distance 0 2h C C lω ω ε= = . As the distance h lω ≫  displacements of B  and D  slightly deviate 

from the horizontal line BD . Nevertheless this deviation is important and approximation of the 
frequency 1ω , presented in (1), is essential. The second eigenmode is vertical translation of the 

structure 0U = , B DW W= − . The third eigenmode is rotation around the centroid C  
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02 B D
lU h W W= − = − . If 2Ci l>  the frequency 3 2ω ω<  and the order of frequencies should be 

changed. 
By assuming that displacements 0 0 0 0B Du w w= = =  when time 0t =  and initial velocities 

are 0uɺ , 0 0 0D Bw w w= =ɺ ɺ ɺ , the displacements can be deduced: 
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Assumption 0 0 0D Bw w w= =ɺ ɺ ɺ  implies initial angular velocity 0 02w lω = ɺ  and vertical 

translation velocity 0CZw =ɺ . 

For column connected to structure with a hinge 33x Ak EI H= , zk EA H= , where E  is 

Young’s modulus, AI  – moment of inertia, A  – cross-section area. For a double-tee cross-

section shape 
2
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where  2h  is the web depth (Fig. 2), the shape parameter 12q A A= , 12A  is the area of the 
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                Fig. 1. Displacements of structure     Fig. 2. Cross-section of column 
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Considering that 3 1ω ω≫ , decrease of the third eigenmode amplitude will be very high 

when compared to the first eigenmode. Only the terms with 1sin tω  in (3) are significant after 10 

or something like that natural periods 3 32T π ω= . Really, ratio of the first mode amplitudes 

after a half of period 1 2T  is 11

2

b
e

b
πζ′

=
′

, but ratio of the third mode amplitudes after the same 

interval of time 1 2T  is 3 3 1 11

2

b
e e

b
πζ ω ω πζ′′

=
′′

≫ . In addition the damping ratio of the third mode 3ζ  

can be more than 1ζ  [5]. So, the system of equations (3) can be approximated 
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Horizontal impact and blast loading 
 
 

Motion of the structure after impact by body of mass em  and velocity euɺ  (Fig. 3) can be 

deduced applying principle of conservation of linear momentum and angular momentum. From 
the conservation principle for z  axis ( )0 0 0 2 0CZ B Dw w w= − =ɺ ɺ ɺ , so the velocities 

0 0 0D Bw w w= =ɺ ɺ ɺ . The other two equations can be presented: 
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where ( )2

0E C eh i h h= − ,  0eh h≠ , Ee  is coefficient of restitution. The final velocities after the 

impact 0uɺ , 0wɺ  can be solved from (5). Relation of these velocities is 
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If 0eh h=  the impact is direct central and 0 0w =ɺ . Dependence of the ratio 2 2
0 0 0u u w+ɺ ɺ ɺ  on 

the distance ratios 0h l , eh l  is in Fig. 4. It should be noted that the ratio does not depend on 

the coefficient of restitution, but either of the two solutions 0uɺ , 0wɺ  of the system (5) depend on 

Ee  and mass ratio em m .  
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Fig. 3. Impact on the structure 

 

 

Fig. 4. Ratio of the velocities 0

2 2
0 0

w

u w+

ɺ

ɺ ɺ

 due to horizontal impact 

 
A blast loading on the structure face wall can be assumed as distributed linear momentum or 

linear impulse during the time interval t+ . Loading on the horizontal plane V VB D  (Fig. 3) is a 

travelling shock wave and, if the distance l  exceeds significantly the positive pressure wave 
length exλ , the resultant should be approximated by force zexR  moving at a velocity 

350exV m s≈ . In Table 1 p∆  is the maximal pressure at the front of a shock wave, t+  – time of 

positive pressure in a fixed-point at a distance exb  from the blast of exC  trotyl (or other 

equivalent explosive) [14]. The time it takes for the force zexR  to move the distance l  is 
320 350 57 10ex ext l V s−= = = ⋅  – approximately 10 times exceeds the time t+  if 20 .l m=  

 
Table 1. 

exC  exb  p∆  t+  exV  exλ  

kg  m  MPa  s  m s  m  

1 10 0.0070 34.7 10−⋅  350 1.6 

1 20 0.0050 36.7 10−⋅  347 2.3 

0.5 10 0.0087 34.2 10−⋅  347 1.5 

0.5 5 0.0230 33.0 10−⋅  371 1.1 
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Fundamental translation frequency of buildings 1 1 4f Hz≈ ÷  [15]. So the structure can be 

assumed as acted upon by a force of a short duration compared with a natural period: t+  is equal 

to one tenth of the period 1T  or less. The time ext  in many cases fulfils this requirement also. 

The total pressure, acting on the face wall, is 2 p∆  due to wave reflection. 

 
Axial and transverse forces of columns 
 

When the structure is subjected to some impact or blast loading the transverse forces BF , 

DF  and the axial force increments BN∆ , DN∆  are exerted (Fig. 3). 

If displacements A Bu u u= =  and no plastic deformations take place in the columns the 

transverse forces B DF F F= =  (Fig. 1). Only horizontal translation and rotation around the 

centroid C  is considered, therefore B Dw w w= =  and 
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When equations (4) are applied and condition 1ε ≪  is taken into account the dependence 

02N n F∆ =  can be deduced. The axial forces of the columns are 
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The dimensionless parameters are determined: 
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A  – cross-section area of a column, Yσ  – yield stress [13]. Equation (8) then  
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h h
C

l H
= , 

2G
Y
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α = . 

When distances BC  and CD  are equal (Fig. 3) then D BN N= , D Bα α=  if 0D BF F= = , 

0D Bβ β= = . In general case, when BC CD≠ , the constants in equations (9) GDα , GBα  will 

not coincide. However in the perfectly elastic domain of deformations from D Bu u u= =  it 

follows that D Bβ β= .  

The linear dependences (9) of the dimensionless axial forces α  on the transverse forces β  

are presented in Fig. 5 where 0.4Gα =  is assumed. The straight line ( )1 1qCβ α= − , 
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1 2

3q

q
C

+
=  depicts the elastic domain. The elasto-plastic domain of column deformation is in 

between the line 1β  and rβ . If angle arctan 2 HCψ =  is small (the angle 1ψ  in Fig. 5) the lines 

of the columns B  and D  are close and the points of intersection with the line 1β , 

1
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1 2
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D q
H q

C
C C

α
β

−
=

+
, 1

1

1 2
GD

B q
H q

C
C C

α
β

−
=

−
 can be assumed as approximately equal. If 

0.4GD GBα α= = , 0 1 4h l = , 1 30h H = , 0.8q =  then 1 120HC =  and 1 0.513Dβ ′ = , 

1 0.528Bβ ′ = . But if 0 5h l =  then 1 6HC =  and 1 0.454Dβ ′′ = , 1 0.608Bβ ′′ = . It can be assumed 

approximately that 1 1D Bβ β′ ′≈  and columns enter elasto-plastic domain both together in the first 

case. 
 

 
Fig. 5. Dependences of the transverse forces on the axial forces 

 
In the elasto-plastic domain the axial force and the transverse force depends on the axial 

displacement w  and transverse displacement u . If HC  is not small then strain in column B  

can stay on in the elastic domain while rigidity of the other column suffers degradation. In any 
case for one or for both columns the explicit dependences of the forces F  and N  on the 
displacements w  and u  are required, as presented in [13], [16]. 

When GB GDα α≠  the two lines start from the different points on the α  axis in Fig. 5 and 

their relative positions can be different. 
The real dependences in the α β−  plane (Fig. 5) can deviate from the straight lines at the 

beginning of motion when the third natural mode of a high frequency 3ω  is not reduced by 

damping. 
 
Conclusions 
 

Motion of a structure subjected to extreme load can be approximated by the first natural 
frequency and mode. This approximation is satisfactory for solution near the elastic and the 
elasto-plastic deformation region border. 

When deformations of one or more columns are in elasto-plastic deformation region 
interconnection of the axial and the transverse forces is essential. Both the axial and the 
transverse forces depend on the axial and transverse displacements. 
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